325 research outputs found

    Expressing application and network adaptivity : time variations and adaptation paths

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2001.Includes bibliographical references (leaves 45-48).Existing wireless networks provide a wide variety of service capabilities. Due to the inherent nature of wireless transmissions, these services are often characterized by high error rates, variable bandwidths and delays, and unpredictable interruptions. Users and applications are somewhat adaptive in their ability to handle these variable service conditions. However applications are not completely flexible nor does the user perceived quality vary in uniform fashion with the changes in network service. By characterizing flexibility, network service variations and application behaviors can be correlated to improve the QoS provided. To this end, this thesis argues that two new concepts, adaptation paths and time constraints, are important. Adaptation paths specify the ways in which network services and traffic can or do change with time. Time constraints capture aspects of QoS requirements related to time. In particular, two time constraints are introduced. First, a Discernible Service Time (DST) captures the duration for which a level of service must or will be provided before it is changed. Second, Interrupt Time (IT) captures durations for which a particular service may be interrupted for whatever reason. To demonstrate the utility of theses constructs this thesis provides a number of examples for how these extensions can be employed in wireless networks to improve QoS.by Steven J. Bauer.S.M

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Medium access control with physical-layer-assisted link differentiation

    Get PDF
    In this paper, we develop medium access control (MAC) schemes for both contention and contention-free accesses over wireless local area networks and give performance analysis of these MAC protocols. User detection and multirate adaptation (MRA) modules are proposed in the physical layer (PHY) to assist link differentiation. With these two modules, for contention accesses, a new distributed queuing MAC protocol (PALD-DQMP) is proposed. Based on different users' channel states, PALD-DQMP makes use of a distributed queuing system to schedule transmissions. To support multimedia transmissions, an enhanced PALD-DQMP (E-PALD-DQMP) is designed by providing two-level optimized transmission scheduling for four access categories, thus eliminating both external and internal collisions among mobile stations. For contention-free accesses, based on the same PHY-assisted link differentiation provided by the two modules, a new multipolling MAC protocol (PALD-MPMP) is proposed, which not only reduces the polling overhead but also prioritizes transmissions according to their delay requirements. Performance analysis and simulation results show that our proposed protocols outperform the standard MAC protocols for both delay-sensitive and best-effort traffics. All these improvements are mainly attributed to the awareness of cross-layer channel state information and the consequent MRA scheme. © 2008 IEEE.published_or_final_versio

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Analysis of a polling system for telephony traffic with application to wireless LANs

    Full text link

    Achievable bandwidth estimation for stations in multi-rate IEEE 802.11 WLAN cells

    Get PDF
    This paper analyzes the effect of multi-rate transmissions in a CSMA wireless LAN environment. Observations in a real testbed showed that bandwidth resources (in Bytes/s) are shared fairly among all stations even though transmissions carried out at lower rates capture the medium for longer periods, which drastically reduces the overall throughput. The intrinsic concept of fairness in a CSMA scheme with multiple rates is quantified by means of a new formulation which is validated through simulations and practical measurements. The algorithm presented provides the maximum achievable bandwidth that can be offered to a given IEEE 802.11 station. Having this information has evident applications in realtime multimedia transmissions over WLANs. The algorithm was also run in commercial APs as a proof of concept, after analyzing its implementation issues
    corecore