51 research outputs found

    Latency Bounds of Packet-Based Fronthaul for Cloud-RAN with Functionality Split

    Get PDF
    The emerging Cloud-RAN architecture within the fifth generation (5G) of wireless networks plays a vital role in enabling higher flexibility and granularity. On the other hand, Cloud-RAN architecture introduces an additional link between the central, cloudified unit and the distributed radio unit, namely fronthaul (FH). Therefore, the foreseen reliability and latency for 5G services should also be provisioned over the FH link. In this paper, focusing on Ethernet as FH, we present a reliable packet-based FH communication and demonstrate the upper and lower bounds of latency that can be offered. These bounds yield insights into the trade-off between reliability and latency, and enable the architecture design through choice of splitting point, focusing on high layer split between PDCP and RLC and low layer split between MAC and PHY, under different FH bandwidth and traffic properties. Presented model is then analyzed both numerically and through simulation, with two classes of 5G services that are ultra reliable low latency (URLL) and enhanced mobile broadband (eMBB).Comment: 6 pages, 7 figures, 3 tables, conference paper (ICC19

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A Quasi-Birth-Death model for functional split in 5G controllers

    Get PDF
    It is broadly accepted that network function virtualization will play a key role to meet the stringent and heterogeneous requirements of 5G networks. Although fully centralized approaches were initially proposed, they may impose unfeasible requirements over fronthaul links. Consequently, flexible functional split solutions are being fostered, where a central controller adapts the centralization level to current circumstances. In spite of the growing interest in this type of solutions, most of existing works focus on real implementation, while little attention has been paid so far to performance modeling. In this paper we propose a Markov Chain based controller model, which boils down to a Quasi-Birth-Death process. Under reasonable assumptions, this model provides expected values of buffer occupancy and the time frames would spend in the controller. In this sense, it aims to be a tool to support the allocation of computational resources of the virtualized entities. We validate the proposed model by comparing its results with those obtained by simulation, evincing an almost perfect match between both approaches.This work has been funded by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00)

    Analysis of Bandwidth and Latency Constraints on a Packetized Cloud Radio Access Network Fronthaul

    Get PDF
    Cloud radio access network (C-RAN) is a promising architecture for the next-generation RAN to meet the diverse and stringent requirements envisioned by fifth generation mobile communication systems (5G) and future generation mobile networks. C-RAN offers several advantages, such as reduced capital expenditure (CAPEX) and operational expenditure (OPEX), increased spectral efficiency (SE), higher capacity and improved cell-edge performance, and efficient hardware utilization through resource sharing and network function virtualization (NFV). However, these centralization gains come with the need for a fronthaul, which is the transport link connecting remote radio units (RRUs) to the base band unit (BBU) pool. In conventional C-RAN, legacy common public radio interface (CPRI) protocol is used on the fronthaul network to transport the raw, unprocessed baseband in-phase/quadrature-phase (I/Q) samples between the BBU and the RRUs, and it demands a huge fronthaul bandwidth, a strict low-latency, in the order of a few hundred microseconds, and a very high reliability. Hence, in order to relax the excessive fronthaul bandwidth and stringent low-latency requirements, as well as to enhance the flexibility of the fronthaul, it is utmost important to redesign the fronthaul, while still profiting from the acclaimed centralization benefits. Therefore, a flexibly centralized C-RAN with different functional splits has been introduced. In addition, 5G mobile fronthaul (often also termed as an evolved fronthaul ) is envisioned to be packet-based, utilizing the Ethernet as a transport technology. In this thesis, to circumvent the fronthaul bandwidth constraint, a packetized fronthaul considering an appropriate functional split such that the fronthaul data rate is coupled with actual user data rate, unlike the classical C-RAN where fronthaul data rate is always static and independent of the traffic load, is justifiably chosen. We adapt queuing and spatial traffic models to derive the mathematical expressions for statistical multiplexing gains that can be obtained from the randomness in the user traffic. Through this, we show that the required fronthaul bandwidth can be reduced significantly, depending on the overall traffic demand, correlation distance and outage probability. Furthermore, an iterative optimization algorithm is developed, showing the impacts of number of pilots on a bandwidth-constrained fronthaul. This algorithm achieves additional reduction in the required fronthaul bandwidth. Next, knowing the multiplexing gains and possible fronthaul bandwidth reduction, it is beneficial for the mobile network operators (MNOs) to deploy the optical transceiver (TRX) modules in C-RAN cost efficiently. For this, using the same framework, a cost model for fronthaul TRX cost optimization is presented. This is essential in C-RAN, because in a wavelength division multiplexing-passive optical network (WDM-PON) system, TRXs are generally deployed to serve at a peak load. But, because of variations in the traffic demands, owing to tidal effect, the fronthaul can be dimensioned requiring a lower capacity allowing a reasonable outage, thus giving rise to cost saving by deploying fewer TRXs, and energy saving by putting the unused TRXs in sleep mode. The second focus of the thesis is the fronthaul latency analysis, which is a critical performance metric, especially for ultra-reliable and low latency communication (URLLC). An analytical framework to calculate the latency in the uplink (UL) of C-RAN massive multiple-input multiple-output (MIMO) system is presented. For this, a continuous-time queuing model for the Ethernet switch in the fronthaul network, which aggregates the UL traffic from several massive MIMO-aided RRUs, is considered. The closed-form solutions for the moment generating function (MGF) of sojourn time, waiting time and queue length distributions are derived using Pollaczek–Khinchine formula for our M/HE/1 queuing model, and evaluated via numerical solutions. In addition, the packet loss rate – due to the inability of the packets to reach the destination in a certain time – is derived. Due to the slotted nature of the UL transmissions, the model is extended to a discrete-time queuing model. The impact of the packet arrival rate, average packet size, SE of users, and fronthaul capacity on the sojourn time, waiting time and queue length distributions are analyzed. While offloading more signal processing functionalities to the RRU reduces the required fronthaul bandwidth considerably, this increases the complexity at the RRU. Hence, considering the 5G New Radio (NR) flexible numerology and XRAN functional split with a detailed radio frequency (RF) chain at the RRU, the total RRU complexity is computed first, and later, a tradeoff between the required fronthaul bandwidth and RRU complexity is analyzed. We conclude that despite the numerous C-RAN benefits, the stringent fronthaul bandwidth and latency constraints must be carefully evaluated, and an optimal functional split is essential to meet diverse set of requirements imposed by new radio access technologies (RATs).Ein cloud-basiertes Mobilfunkzugangsnetz (cloud radio access network, C-RAN) stellt eine vielversprechende Architektur für das RAN der nächsten Generation dar, um die vielfältigen und strengen Anforderungen der fünften (5G) und zukünftigen Generationen von Mobilfunknetzen zu erfüllen. C-RAN bietet mehrere Vorteile, wie z.B. reduzierte Investitions- (CAPEX) und Betriebskosten (OPEX), erhöhte spektrale Effizienz (SE), höhere Kapazität und verbesserte Leistung am Zellrand sowie effiziente Hardwareauslastung durch Ressourcenteilung und Virtualisierung von Netzwerkfunktionen (network function virtualization, NFV). Diese Zentralisierungsvorteile erfordern jedoch eine Transportverbindung (Fronthaul), die die Antenneneinheiten (remote radio units, RRUs) mit dem Pool an Basisbandeinheiten (basisband unit, BBU) verbindet. Im konventionellen C-RAN wird das bestehende CPRI-Protokoll (common public radio interface) für das Fronthaul-Netzwerk verwendet, um die rohen, unverarbeitet n Abtastwerte der In-Phaseund Quadraturkomponente (I/Q) des Basisbands zwischen der BBU und den RRUs zu transportieren. Dies erfordert eine enorme Fronthaul-Bandbreite, eine strenge niedrige Latenz in der Größenordnung von einigen hundert Mikrosekunden und eine sehr hohe Zuverlässigkeit. Um die extrem große Fronthaul-Bandbreite und die strengen Anforderungen an die geringe Latenz zu lockern und die Flexibilität des Fronthauls zu erhöhen, ist es daher äußerst wichtig, das Fronthaul neu zu gestalten und dabei trotzdem von den erwarteten Vorteilen der Zentralisierung zu profitieren. Daher wurde ein flexibel zentralisiertes CRAN mit unterschiedlichen Funktionsaufteilungen eingeführt. Außerdem ist das mobile 5G-Fronthaul (oft auch als evolved Fronthaul bezeichnet) als paketbasiert konzipiert und nutzt Ethernet als Transporttechnologie. Um die Bandbreitenbeschränkung zu erfüllen, wird in dieser Arbeit ein paketbasiertes Fronthaul unter Berücksichtigung einer geeigneten funktionalen Aufteilung so gewählt, dass die Fronthaul-Datenrate mit der tatsächlichen Nutzdatenrate gekoppelt wird, im Gegensatz zum klassischen C-RAN, bei dem die Fronthaul-Datenrate immer statisch und unabhängig von der Verkehrsbelastung ist. Wir passen Warteschlangen- und räumliche Verkehrsmodelle an, um mathematische Ausdrücke für statistische Multiplexing- Gewinne herzuleiten, die aus der Zufälligkeit im Benutzerverkehr gewonnen werden können. Hierdurch zeigen wir, dass die erforderliche Fronthaul-Bandbreite abhängig von der Gesamtverkehrsnachfrage, der Korrelationsdistanz und der Ausfallwahrscheinlichkeit deutlich reduziert werden kann. Darüber hinaus wird ein iterativer Optimierungsalgorithmus entwickelt, der die Auswirkungen der Anzahl der Piloten auf das bandbreitenbeschränkte Fronthaul zeigt. Dieser Algorithmus erreicht eine zusätzliche Reduktion der benötigte Fronthaul-Bandbreite. Mit dem Wissen über die Multiplexing-Gewinne und die mögliche Reduktion der Fronthaul-Bandbreite ist es für die Mobilfunkbetreiber (mobile network operators, MNOs) von Vorteil, die Module des optischen Sendeempfängers (transceiver, TRX) kostengünstig im C-RAN einzusetzen. Dazu wird unter Verwendung des gleichen Rahmenwerks ein Kostenmodell zur Fronthaul-TRX-Kostenoptimierung vorgestellt. Dies ist im C-RAN unerlässlich, da in einem WDM-PON-System (wavelength division multiplexing-passive optical network) die TRX im Allgemeinen bei Spitzenlast eingesetzt werden. Aufgrund der Schwankungen in den Verkehrsanforderungen (Gezeiteneffekt) kann das Fronthaul jedoch mit einer geringeren Kapazität dimensioniert werden, die einen vertretbaren Ausfall in Kauf nimmt, was zu Kosteneinsparungen durch den Einsatz von weniger TRXn und Energieeinsparungen durch den Einsatz der ungenutzten TRX im Schlafmodus führt. Der zweite Schwerpunkt der Arbeit ist die Fronthaul-Latenzanalyse, die eine kritische Leistungskennzahl liefert, insbesondere für die hochzuverlässige und niedriglatente Kommunikation (ultra-reliable low latency communications, URLLC). Ein analytisches Modell zur Berechnung der Latenz im Uplink (UL) des C-RAN mit massivem MIMO (multiple input multiple output) wird vorgestellt. Dazu wird ein Warteschlangen-Modell mit kontinuierlicher Zeit für den Ethernet-Switch im Fronthaul-Netzwerk betrachtet, das den UL-Verkehr von mehreren RRUs mit massivem MIMO aggregiert. Die geschlossenen Lösungen für die momenterzeugende Funktion (moment generating function, MGF) von Verweildauer-, Wartezeit- und Warteschlangenlängenverteilungen werden mit Hilfe der Pollaczek-Khinchin-Formel für unser M/HE/1-Warteschlangenmodell hergeleitet und mittels numerischer Verfahren ausgewertet. Darüber hinaus wird die Paketverlustrate derjenigen Pakete, die das Ziel nicht in einer bestimmten Zeit erreichen, hergeleitet. Aufgrund der Organisation der UL-Übertragungen in Zeitschlitzen wird das Modell zu einem Warteschlangenmodell mit diskreter Zeit erweitert. Der Einfluss der Paketankunftsrate, der durchschnittlichen Paketgröße, der SE der Benutzer und der Fronthaul-Kapazität auf die Verweildauer-, dieWartezeit- und dieWarteschlangenlängenverteilung wird analysiert. Während das Verlagern weiterer Signalverarbeitungsfunktionalitäten an die RRU die erforderliche Fronthaul-Bandbreite erheblich reduziert, erhöht sich dadurch im Gegenzug die Komplexität der RRU. Daher wird unter Berücksichtigung der flexiblen Numerologie von 5G New Radio (NR) und der XRAN-Funktionenaufteilung mit einer detaillierten RF-Kette (radio frequency) am RRU zunächst die gesamte RRU-Komplexität berechnet und später ein Kompromiss zwischen der erforderlichen Fronthaul-Bandbreite und der RRU-Komplexität untersucht. Wir kommen zu dem Schluss, dass trotz der zahlreichen Vorteile von C-RAN die strengen Bandbreiten- und Latenzbedingungen an das Fronthaul sorgfältig geprüft werden müssen und eine optimale funktionale Aufteilung unerlässlich ist, um die vielfältigen Anforderungen der neuen Funkzugangstechnologien (radio access technologies, RATs) zu erfüllen

    Understanding the performance of flexible functional split in 5G vRAN controllers: A Markov Chain-based model

    Get PDF
    We study Flexible Functional Split functionality of 5G vRAN controllers in 5G networks. We propose an innovative model, based on a Markov Chain, which can be used to characterize their performance. We consider both infinite and finite-buffer controllers. In the former, frames would not be lost (provided the system works in a stable regime), and we thus focus on the time frames stay at the controller. For the finite-buffer controller, there might be losses, and we analyze the trade-off between time at the controller (which might hinder the stringent delay requirements of 5G services), and loss probability. Matrix-geometric techniques are used to resolve the corresponding Quasi-Birth-Death process. The validity of the proposed model is assessed by means of an extensive experiment campaign carried out over an ad-hoc eventdriven simulator, which is also used to broaden the analysis, considering different service rate distributions, as well as the variability of the studied performance indicators. The results show that the proposed model can be effectively exploited to tackle the dimensioning of these systems, as it sheds light on how their configuration impacts the expected delay and loss rate.This work has been funded by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00)

    Encapsulation Techniques and Traffic Characterisation of an Ethernet-Based 5G Fronthaul

    Get PDF
    This paper first overviews how, in the 5G Next Generation Radio Access Network (NG-RAN), the Next generation NodeB (gNB) functions are split into Distributed Unit (DU) and Central Unit (CU). Then it describes the proposed fronthaul transport solutions, such as Common Packet Radio Interface (CPRI), eCPRI, IEEE P1914.3 and their relationship with the Ethernet protocol. Finally, a characterisation of the traffic generated by the fronthaul is presented. Such characterisation may guide in the selection of the right network for fronthaul transport.This work has been partially funded by the EU H2020 “5G-Transformer” Project (grant no. 761536)

    Impact of Virtualization Technologies on Virtualized RAN Midhaul Latency Budget: A Quantitative Experimental Evaluation

    Get PDF
    In the Next Generation Radio Access Network (NGRAN) defined by 3GPP for the fifth generation of mobile communications (5G), the next generation NodeB (gNB) is split into a Radio Unit (RU), a Distributed Unit (DU), and a Central Unit (CU). RU, DU, and CU are connected through the fronthaul (RU-DU) and midhaul (DU-CU) segments. If the RAN is also virtualised RAN (VRAN), DU and CU are deployed in virtual machines or containers. Different latency and jitter requirements are demanded on the midhaul according to the distribution of the protocol functions between DU and CU. This study shows that, in VRAN, the virtualisation technologies, the functional split option, and the number of elements deployed in the same computational resource affect the latency budget available for the midhaul. Moreover, it provides an expression for the midhaul allowable latency as a function of the aforementioned parameters. Finally, it shows that, the virtualised DUs featuring a lower layer split option shall be deployed not in the sameThis work has been partially funded by the EC H2020 “5G-Transformer” Project (grant no. 761536)

    On the Optimization of Multi-Cloud Virtualized Radio Access Networks

    Full text link
    We study the important and challenging problem of virtualized radio access network (vRAN) design in its most general form. We develop an optimization framework that decides the number and deployment locations of central/cloud units (CUs); which distributed units (DUs) each of them will serve; the functional split that each BS will implement; and the network paths for routing the traffic to CUs and the network core. Our design criterion is to minimize the operator's expenditures while serving the expected traffic. To this end, we combine a linearization technique with a cutting-planes method in order to expedite the exact solution of the formulated problem. We evaluate our framework using real operational networks and system measurements, and follow an exhaustive parameter-sensitivity analysis. We find that the benefits when departing from single-CU deployments can be as high as 30% for our networks, but these gains diminish with the further addition of CUs. Our work sheds light on the vRAN design from a new angle, highlights the importance of deploying multiple CUs, and offers a rigorous framework for optimizing the costs of Multi-CUs vRAN.Comment: This preprint is to be published in Proc. of IEEE International Conference on Communications (ICC) 202
    corecore