663 research outputs found

    Wireless Broadcast with Network Coding in Mobile Ad-Hoc Networks: DRAGONCAST

    Get PDF
    Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes of the network. We use network coding as a loss tolerant, energy-efficient, method for broadcast. Our emphasis is on mobile networks. Our contribution is the proposal of DRAGONCAST, a protocol to perform network coding in such a dynamically evolving environment. It is based on three building blocks: a method to permit real-time decoding of network coding, a method to adjust the network coding transmission rates, and a method for ensuring the termination of the broadcast. The performance and behavior of the method are explored experimentally by simulations; they illustrate the excellent performance of the protocol

    Quantifying Link Stability in Ad Hoc Wireless Networks Subject to Ornstein-Uhlenbeck Mobility

    Full text link
    The performance of mobile ad hoc networks in general and that of the routing algorithm, in particular, can be heavily affected by the intrinsic dynamic nature of the underlying topology. In this paper, we build a new analytical/numerical framework that characterizes nodes' mobility and the evolution of links between them. This formulation is based on a stationary Markov chain representation of link connectivity. The existence of a link between two nodes depends on their distance, which is governed by the mobility model. In our analysis, nodes move randomly according to an Ornstein-Uhlenbeck process using one tuning parameter to obtain different levels of randomness in the mobility pattern. Finally, we propose an entropy-rate-based metric that quantifies link uncertainty and evaluates its stability. Numerical results show that the proposed approach can accurately reflect the random mobility in the network and fully captures the link dynamics. It may thus be considered a valuable performance metric for the evaluation of the link stability and connectivity in these networks.Comment: 6 pages, 4 figures, Submitted to IEEE International Conference on Communications 201

    EZ-AG: Structure-free data aggregation in MANETs using push-assisted self-repelling random walks

    Get PDF
    This paper describes EZ-AG, a structure-free protocol for duplicate insensitive data aggregation in MANETs. The key idea in EZ-AG is to introduce a token that performs a self-repelling random walk in the network and aggregates information from nodes when they are visited for the first time. A self-repelling random walk of a token on a graph is one in which at each step, the token moves to a neighbor that has been visited least often. While self-repelling random walks visit all nodes in the network much faster than plain random walks, they tend to slow down when most of the nodes are already visited. In this paper, we show that a single step push phase at each node can significantly speed up the aggregation and eliminate this slow down. By doing so, EZ-AG achieves aggregation in only O(N) time and messages. In terms of overhead, EZ-AG outperforms existing structure-free data aggregation by a factor of at least log(N) and achieves the lower bound for aggregation message overhead. We demonstrate the scalability and robustness of EZ-AG using ns-3 simulations in networks ranging from 100 to 4000 nodes under different mobility models and node speeds. We also describe a hierarchical extension for EZ-AG that can produce multi-resolution aggregates at each node using only O(NlogN) messages, which is a poly-logarithmic factor improvement over existing techniques

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    HYMAD: Hybrid DTN-MANET Routing for Dense and Highly Dynamic Wireless Networks

    Full text link
    In this paper we propose HYMAD, a Hybrid DTN-MANET routing protocol which uses DTN between disjoint groups of nodes while using MANET routing within these groups. HYMAD is fully decentralized and only makes use of topological information exchanges between the nodes. We evaluate the scheme in simulation by replaying real life traces which exhibit this highly dynamic connectivity. The results show that HYMAD outperforms the multi-copy Spray-and-Wait DTN routing protocol it extends, both in terms of delivery ratio and delay, for any number of message copies. Our conclusion is that such a Hybrid DTN-MANET approach offers a promising venue for the delivery of elastic data in mobile ad-hoc networks as it retains the resilience of a pure DTN protocol while significantly improving performance.Comment: 7 pages, 6 figure

    Exploiting random walks for robust, scalable, structure-free data aggregation and routing in mobile ad-hoc networks (MANETs)

    Get PDF
    The focus of this thesis is on the design of scalable data aggregation protocols for Mobile Ad-hoc Networks (MANETs). Data aggregation Protocols that rely on network structures such as trees or backbones are not well suited for MANETs because the underlying topology of MANETs is constantly changing. On the other hand, unstructured techniques such as flooding and gossiping have a high messaging overhead and take a long time to finish. Therefore, in this thesis, we explore the use of random walks as a structure-free alternative for data aggregation in MANETs.;The basic idea is to introduce one or more tokens that successively visit each node in a MANET by executing a random walk and compute the aggregate state. While random walks are simple, robust and overhead-free, plain random walks tend to be slow in visiting all nodes because the token can get stuck in regions of already visited nodes. Therefore, we first introduce self-repelling random walks (SRRW) in which at each step, the token chooses a neighbor that has been visited the least number of times. While SRRW significantly speeds up random walks in the initial stages, towards the end a slowdown is observed when a significant fraction of nodes are already visited. To address this shortcoming, we then develop two complementary strategies that speed up data aggregation.;First, we introduce gradient biased random walks (a pull-based strategy) where short temporary multi-hop gradients are used to pull the tokens toward unvisited node. We prove that gradient biased random walks achieve a cover time of O(N) and message overhead of O(NlogN) where N is the number of nodes in the network. Next, we introduce a push-based strategy in which self-repelling random walks are complemented by a single step push phase before the random walk phase, in which each node broadcasts its information to its neighbors. We show that this small push goes a long way in speeding up data aggregation. Push based random walks finish data aggregation in O(N) message and time. Finally, we describe hierarchical extension of the push-based protocol which can produce multi-resolution aggregates at each node using only O(NlogN) messages.;All our results are validated using simulations in ns-3 in networks ranging from 100 to 4000 nodes under different network densities, node speed and mobility models

    Performance Evaluation of Reactive Routing Protocols in MANETs in Association with TCP Newreno

    Get PDF
    We inspect the performance of TCP NewReno protocol for data transfer in Mobile Ad hoc networks (MANETs). Dynamic Source Routing (DSR) protocols and AdHoc On-demand Distance Vector (AODV) are standard reactive routing protocols widely used in MANETs. In addition we also have to consider Transmission Control Protocol (TCP) as essential for MANETs since it is one of the widely used internet protocol for dependable data transmission. TCP has its variants namely TCP Reno, TCP NewReno , TCP Vegas and TCP SACK. In this paper we are evaluating the performance of DSR and AODV in association with TCP Newreno with respect to various parameters such as Average throughput, instant throughput, residual energy, packet delivery ratio. The ns-2 network simulator was used for simulation

    Policy-Based Immunization Framework for MANET

    Get PDF
    Mobility is one of the most important driving forces of hyper-interconnected world that we are living in. Mobile computing devices are becoming smaller, more ubiquitous and simultaneously providing more computing power. Various mobile devices in diff rent sizes with high computing power cause the emergence of new type of networks\u27 applications. Researchers in conferences, soldiers in battlefields, medics in rescue missions, and drivers in busy high- ways can perform more efficiently if they can be connected to each other and aware of the environment they are interacting with. In all mentioned scenarios, the major barrier to have an interconnected collaborative environment is the lack of infrastructure. Mobile Ad hoc Networks (MANETs) are very promising to be able to handle this challenge. In recent years, extensive research has been done on MANETs in order to deliver secure and reliable network services in an infrastructure-less environment. MANETs usually deal with dynamic network topologies and utilize wireless technologies, they are very susceptible to different security attacks targeting different network layers. Combining policy-based management concepts and trust evaluation techniques in more granular level than current trust management frameworks can lead to interesting results toward more secure and reliable MANETs
    • …
    corecore