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Abstract

Exploiting random walks for robust, scalable, structure-free data aggregation and routing
in mobile ad-hoc networks (MANETs)

Masahiro Nakagawa

The focus of this thesis is on the design of scalable data aggregation protocols for Mobile
Ad-hoc Networks (MANETs). Data aggregation Protocols that rely on network structures
such as trees or backbones are not well suited for MANETs because the underlying topol-
ogy of MANETs is constantly changing. On the other hand, unstructured techniques such
as flooding and gossiping have a high messaging overhead and take a long time to finish.
Therefore, in this thesis, we explore the use of random walks as a structure-free alternative
for data aggregation in MANETs.

The basic idea is to introduce one or more tokens that successively visit each node in
a MANET by executing a random walk and compute the aggregate state. While random
walks are simple, robust and overhead-free, plain random walks tend to be slow in visiting
all nodes because the token can get stuck in regions of already visited nodes. Therefore, we
first introduce self-repelling random walks (SRRW) in which at each step, the token chooses
a neighbor that has been visited the least number of times. While SRRW significantly
speeds up random walks in the initial stages, towards the end a slowdown is observed when
a significant fraction of nodes are already visited. To address this shortcoming, we then
develop two complementary strategies that speed up data aggregation.

First, we introduce gradient biased random walks (a pull-based strategy) where short
temporary multi-hop gradients are used to pull the tokens toward unvisited node. We prove
that gradient biased random walks achieve a cover time of O(N) and message overhead of
O(NlogN) where N is the number of nodes in the network. Next, we introduce a push-
based strategy in which self-repelling random walks are complemented by a single step push
phase before the random walk phase, in which each node broadcasts its information to its
neighbors. We show that this small push goes a long way in speeding up data aggregation.
Push based random walks finish data aggregation in O(N) message and time. Finally, we
describe hierarchical extension of the push-based protocol which can produce multi-resolution
aggregates at each node using only O(NlogN) messages.

All our results are validated using simulations in ns-3 in networks ranging from 100 to
4000 nodes under different network densities, node speed and mobility models.



iii

Acknowledgements

First, I want to thank my committee chair and advisor, Dr. Vinod K. Kulathumani, for

guiding me in the research and providing me the opportunity to work with him and his other

graduate students. This thesis work has been made possible with his constant support and

guidance.

I also want to thank Dr. Katerina Goseva-Popstojanova, Dr.Yasser P. Fallah, Dr.YanFang

Ye, and Dr.Ashish Nimbarte for being a part of the my committee. I got variable com-

ments/advice from them.

I would also like to thank Dr. Anish Arora for providing valuable feedback on the random

walk based protocols, which improved the outcome of this thesis.

Last but not the least, I want to express my gratitude to my family. My parents have been

very encouraging on my decision to go purse my study. Their support has been relentless

and a constant motivation to my desire of pursuing Computer Science in school.



iv

Contents

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and problem statement . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Local biasing techniques . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Speeding up self-repelling random walks using short gradients . . . . 6
1.3.3 EZ-AG: (Push assisted self-repelling random walk) . . . . . . . . . . 7
1.3.4 Hierarchical EZ-AG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background work and existing literature 11
2.1 Structure-based protocols for static sensor networks . . . . . . . . . . . . . . 11

2.1.1 Tiny AGgregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Synopsis diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Directed Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 CTP:Collection Tree Protocol . . . . . . . . . . . . . . . . . . . . 14

2.2 Structure-free protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 System Model 18
3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Local-biasing to speed up random walks 21
4.1 Self-repelling random walks:Protocol description . . . . . . . . . . . . . . . . 21

4.1.1 Token passing with self-repelling random walks . . . . . . . . . . . . 22



CONTENTS v

4.2 Analysis of self-repelling random walks . . . . . . . . . . . . . . . . . . . . . 22
4.3 Uniformity of self-repelling random walk . . . . . . . . . . . . . . . . . . . . 26
4.4 Variant of self-repelling random walks . . . . . . . . . . . . . . . . . . . . . . 28

5 Gradient Biased Random Walks 29
5.1 Gradient Biased Random Walks: Protocol description . . . . . . . . . . . . . 29
5.2 Analysis of gradient biased random walks . . . . . . . . . . . . . . . . . . . . 31

6 EZ-AG:Push assisted self-repelling walk 34
6.1 ODI (order and duplicate insensitive) synopsis . . . . . . . . . . . . . . . . . 34

6.1.1 Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3 Uniform sample of sensor reading . . . . . . . . . . . . . . . . . . . . 36

6.2 EZ-AG: Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Analysis of EZ-AG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Hierarchical aggregation 41
7.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Analysis of Hierarchical EZ-AG . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Performance Evaluation of different types of Random Walks 44
8.1 Comparing random walks: Pure vs self-repelling vs gradient biased self-repelling

random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Analysis of Self-repelling random walk vs Gradient biased self-repelling ran-

dom walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2.1 Convergence characteristics . . . . . . . . . . . . . . . . . . . . . . . 47
8.2.2 Message overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.3 Multiple tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.4 Impact of mobility model . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.5 Impact of node speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.6 Gradient biased random walk in sparse networks . . . . . . . . . . . . 51

8.3 Binary self-repelling random walks vs self-repelling random walks . . . . . . 54
8.4 Self-repelling random walks vs EZ-AG . . . . . . . . . . . . . . . . . . . . . 54

8.4.1 Convergence characteristics . . . . . . . . . . . . . . . . . . . . . . . 55
8.4.2 Message and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4.3 Impact of mobility model and speed . . . . . . . . . . . . . . . . . . . 57

8.5 Gradient biased self-repelling random walks vs EZ-AG . . . . . . . . . . . . 59

9 Comparison against tree based approach 61
9.1 Aggregate Tree Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2 Total time and message with different node speed . . . . . . . . . . . . . . . 63
9.3 Comparison with gossip techniques . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS vi

10 Discussion 66
10.1 Reliable token transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.2 Termination detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.3 Token ex-filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11 Conclusion 70
11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 72



vii

List of Figures

1.1 The random walk may pass a token to visited node even unvisited nodes are
present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Relationship between each variation of random walks in this thesis.Locally
biased idea significantly decreases a cover time but slows down after covering
certain fraction of the network. Push idea and Pull idea is used to cope with
this slowdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 During token passing, a token may be surrounded by an island of visited nodes
(white circles), i.e., all neighboring nodes have already been visited. Nodes
that have not yet been visited (indicated by dark circles) periodically set up
a gradient using the set of visited nodes to attract the token towards them. . 6

4.1 Distribution of number of visits at each node at different stages of exploration
of a self-repelling random walk (network size 100,500 and 1000 nodes) . . . . 27

4.2 Comparison of coverage uniformity with pure random walks . . . . . . . . . 28

6.1 Proof synopsis: Consider the region divided into square cells with diagonal
size R. At the end of single step push phase, each node has information about
all nodes in its cell. So it is sufficient for the token (performing a self-repelling
random walk) to visit one node in each cell to finish aggregation. . . . . . . 39

7.1 Extension of EZ-Ag to deliver multi-resolution aggregates: The network is
partitioned into cells of increasing hierarchy where the cell at smallest level
is of diagonal R. The node y shown in the figure would receive an aggregate
corresponding to one cell at each level that it belongs to. In this case, it would
receive aggregates for cells A, B, C and D. The largest cell D consists of the
entire network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.1 Convergence pattern on network of 500 nodes for a given trial with and with-
out bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 Analysis of exploration overhead . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3 Analysis of exploration overhead . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.4 Analysis of message overhead for self-repelling random walk with and without

gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.5 Analysis of cover time with multiple tokens . . . . . . . . . . . . . . . . . . . 49
8.6 Analysis of cover time and message overhead for N = 500 . . . . . . . . . . . 50



LIST OF FIGURES viii

8.7 Impact of mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.8 Impact of node speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.9 Impact of density(Sparse network) . . . . . . . . . . . . . . . . . . . . . . . . 53
8.10 Exploration overhead as a function of network size for locally biased random

walks and self-repelling random walks . . . . . . . . . . . . . . . . . . . . . . 53
8.11 Exploration overhead at 100% coverage as a function of network size for self-

repelling random walks and EZ-AG . . . . . . . . . . . . . . . . . . . . . . . 54
8.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.13 Total time and messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.14 Analysis of exploration overhead over different mobility model . . . . . . . . 58
8.15 Analysis of exploration overhead of EZ-AG for different speed . . . . . . . . 58
8.16 Comparison between EZ-AG and Gradient biased . . . . . . . . . . . . . . . 59

9.1 Comparison of time and messages for EZ-AG and tree-based protocol at dif-
ferent node speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.2 Comparison of time and messages for EZ-AG and tree-based protocol at dif-
ferent network size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.3 Projected number of messages per node for hierarchical EZ-AG and multi-
resolution spatial gossip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



ix

List of Tables

1.1 Mapping between speed and link change per node per second . . . . . . . . . 2

2.1 Cover time and Hitting time of graphs . . . . . . . . . . . . . . . . . . . . . 15



1

Chapter 1

Introduction

1.1 Overview

The focus of this thesis is the design of scalable and robust data aggregation protocols

for MANETs. A MANET (Mobile Ad-hoc NETwork) is a type of wireless network that

consists of a collection of small moving devices called nodes, each equipped with a radio and

a processor. A node can communicate with all nodes within its communication range. Also,

a node in MANETs moves according to an underlying motion model that is application-

specific. Due to the underlying motion, the topology of MANETs changes continuously.

These characteristics make the protocol design for MANETs very challenging.

Data aggregation protocols aim to collect summary information from all the nodes in the

network. An aggregated value can be some statistical measure such as average, standard

deviation of the sensor state or it could be the number of nodes meeting a specific predicate.

For example, the density of vehicles in a given area of city can be monitored using data

aggregation. A query can be sent to all the vehicles in a given area. (This can be done

using an infrastructure in the area). The vehicles in the area can aggregate information

and send only the aggregate value back to the infrastructure. This way, individual vehicles

do not have to send data back to the infrastructure. (The same approach can be extended

to monitor average speed or weather information if a vehicle has sensors that can detect

weather change).

There are two different types of data aggregation: duplicate-sensitive data aggregation
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Table 1.1: Mapping between speed and link change per node per second

Size 3m/s 9m/s 15m/s 21m/s

100 1 5 7 9
200 2 6 9 12
300 2 7 10 14
500 3 8 12 16
1000 3 9 14 18
2000 3.8 10 16 20
4000 4 12 18 23

and duplicate-insensitive data aggregation. If the aggregated value is sensitive to duplicate

count of the data from the same node, the aggregation is called duplicate-sensitive aggregate.

An average, a mode, and a standard deviation are examples of duplicate-sensitive data

aggregation. On the other hand, finding the maximum value or the minimum value are

examples of duplicate-insensitive data aggregation (also called ODI aggregation) because

counting data from the same node multiple times does not change the aggregated value.

1.2 Background and problem statement

Significant research has been done on the design of data aggregation for static sensor

networks and networks with mostly stable links. These protocols typically achieve data

routing by forming a tree or a network backbone structure over the network topology. Once

such a structure is created, data aggregation can be performed by routing along such a

fixed structure to collect data. We refer to these protocols as structure-based protocols

and examples of structure-based protocols can be found in [1, 2, 3, 4]. However, these

structure-based protocols are known to have a scalability issue if the underlying structure is

not stable. This is especially true in MANETs, where due to the movement of the nodes,

the links between nodes change very frequently. In Table1.1, we state the average number

of link change per node per second over different node speeds at the different network sizes

and deployment densities that we consider in this thesis. As seen in Table 1.1, the number

of link changes per second are quite significant. Note that in the presence of such high link

dynamics, the structure-based protocols need to detect a broken link as soon as it occurs
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Token

Figure 1.1: The random walk may pass a token to visited node even unvisited nodes are

present

and then fix it in a timely fashion. This incurs a very high message overhead and causes a

scalability issue [5].

1.2.1 Random walks

To avoid the scalability issue posed by MANETs, in this thesis we explore the use of

random walks as a simple, unstructured tool for data aggregation in MANETs. The idea is

to circulate one or more tokens in the network that traverse the network using a random walk

strategy for moving from one node to the next. When a node is visited for the first time, the

node state is aggregated into the token. Thus, when all nodes have been visited at least once,

the aggregate is computed and the resulting aggregate can be simply flooded back to all the

nodes. To ensure that data is not duplicated in the aggregate, each node can keep track of

whether it has been visited. This way, a node’s data will be added into the aggregate only

if it has not been visited before. Note that this random walk based idea is inherently stable

in the presence of network dynamics [6]. Moreover, there are no critical points of failure.

There is also no memory overhead because the token only carries the overall aggregate and

not the individual data items. This results in a simple, robust protocol. However, plain

random walks are quite slow and require a long time to cover all the nodes because they can
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Random 
Walks

Self-repelling random 
walk

Binary self-repelling 
random walk

Gradient biased random walk

EZ-AG
(Push-Assisted random walk)

Hierarchical  EZ-AG

Locally biased  idea

Pull Based idea

Push Based idea

Figure 1.2: Relationship between each variation of random walks in this thesis.Locally biased

idea significantly decreases a cover time but slows down after covering certain fraction of the

network. Push idea and Pull idea is used to cope with this slowdown

be stuck in regions of already visited nodes and finding the next unvisited node may take a

large number of wasted token traversals (see Fig.1.1).

The objective of this thesis to design strategies that speed up random walks for

data aggregation, while still retaining their simplicity and robustness.

1.3 Thesis overview

An overview of the different variations of random walks that we explore in this thesis is

shown in Fig. 1.2. We now summarize these ideas.

1.3.1 Local biasing techniques

In order to avoid slow down of the pure random walk, we first explore some local biasing

strategies for random walks. One such idea is a self-repelling random walk [7] in which the

token is passed to the neighbor that has been visited least number of times (with ties broken

uniformly at random). If a neighbor is an unvisited node, the number of times this node has

been visited is zero. Thus, self-repelling random walks prioritize the unvisited nodes over the
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previously visited nodes. When a token holder has no unvisited neighbor, the self-repelling

random walk selects a node that has been visited the least number of times.

The self-repelling random walk is known to traverse a two dimensional lattice uniformly

[8]. We empirically show that this uniformity characteristic during traversal of nodes holds

even in dynamic networks. This property is important because it shows that a self-repelling

random walk is likely to explore unvisited regions in the network as opposed to getting stuck

in regions of already visited nodes. Due to this uniformity property in traversal, self-repelling

random walks significantly reduce the cover time. We analytically show that self-repelling

random walks achieve a cover time of O(Nlog(N)). Moreover, we prove that by using self-

repelling random walks, a significant portion of the network can be covered much faster than

the pure random walk.

However, self-repelling random walks start to slow down when the fraction of already

visited nodes in the network exceeds a certain threshold. This is because self-repelling

random walk (giving higher precedence to an unvisited node) helps only when a node has at

least one unvisited neighbor. If all neighbors are already visited, the self-repelling random

walk loses its advantage. Until a token moves to a node with unvisited neighbor, it keeps

visiting already visited nodes. While the order of convergence with respect to node size N

remains O(Nlog(N)), the slow down creates a long tail in the convergence.

One of the consideration when implementing self-repelling random walks is the number

of requests generated for a token during each successive iteration. If all neighbors request a

token by specifying the number of times they have been visited, the number of token requests

will grow with the network density. To avoid this, we seed the request generation such that

nodes with fewer number of visits generate a token request earlier. Also, if a node overhears

a token request message sent from a node having higher precedence, it suppresses its own

token request message. These two actions ensure that the number of token requests stay

fairly constant and small irrespective of the network size and density.
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Figure 1.3: During token passing, a token may be surrounded by an island of visited nodes

(white circles), i.e., all neighboring nodes have already been visited. Nodes that have not

yet been visited (indicated by dark circles) periodically set up a gradient using the set of

visited nodes to attract the token towards them.

1.3.2 Speeding up self-repelling random walks using short gradi-

ents

In the previous subsection, we saw that the pure random walk can be made faster to

an extent by using self-repelling random walks. However, when most nodes are visited,

self-repelling random walks exhibit a slow down. To address this slow down, we first use a

pull-based idea where the tokens are pulled towards unvisited nodes using short multi-hop

gradients.

To prevent a token from staying in the region of visited nodes while there are still unvis-

ited nodes to be explored, we set up short, temporary multi-hop gradients to pull a token

towards an unvisited node. (See Fig. 1.3) We analytically show that this gradient-based

strategy achieves a cover time of O(N). Thus, the order of convergence improves by a factor

of log(N). In doing so, the gradient biased random walk introduces a gradient message

overhead of O(Nlog(N)) to pull tokens towards unvisited nodes. Nevertheless, this over-

head is compensated by a reduction in the required number of token transfers. In fact, our
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simulations show that the ratio of token transfers to that of node size, (i.e., the exploration

overhead of gradient biased random walk) remains constant (irrespective of the network size)

and close to 1.

1.3.3 EZ-AG: (Push assisted self-repelling random walk)

In the context of duplicate-insensitive (ODI) aggregation, we study a push based idea in

which before the self-repelling random walk starts, we introduce a single step push phase. In

the push phase, each node advertises its state (data) to its neighbors. We call this technique

EZ-AG. EZ-AG is designed for the ODI data aggregation [9, 10, 11, 12]. In an ODI-synopsis,

the data from the same node can be aggregated multiple times without affecting the result.

Examples of such duplicate-insensitive data aggregation are MAX and MIN. Other statistical

count such as the SUM and AVERAGE can be also implemented with the ODI synopsis using

probabilistic techniques. [10, 13].

To speed up random walks, EZ-AG uses a complementary push phase that speeds up

the convergence. The push phase consists of simple one-hop broadcast from each node in

the network. Before the self-repelling random walk is started, each node broadcasts its

own state (some information obtained at the node such as sensor reading). Thus, before

the self-repelling random walk is started, each node now carries information about all its

neighbors. As a result, random walk can finish aggregation without visiting all nodes. We

show that with the addition of the push phase, the aggregation can finish before the self-

repelling random walk starts to slow down. This significantly improves the required time

and message: EZ-AG requires only O(N) message and time to complete the aggregation.

We compare our results with structure-free techniques for the ODI data aggregation such as

gossiping and show a log(N) factor improvement in messages compared to existing gossip

based techniques.

1.3.4 Hierarchical EZ-AG

When a network is quite large, providing a single aggregate value to the entire network

may not be sufficient. It may be more useful to provide each node with a distance sensitive
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multi-resolution aggregate, i.e., to provide aggregate information about neighborhoods of

increasing sizes around itself. EZ-AG can be extended to provide such multi-resolution

synopsis of nodes in the network with only O(Nlog(N)) messages.

Existing techniques for such hierarchical aggregation require O(Nlog5.4(N)) messages

[11]. Thus, EZ-AG offers a poly-logarithmic factor improvement in terms of the number

of messages for hierarchical aggregation. Moreover, EZ-AG can also be used to generate

hierarchical aggregates that are distance-sensitive in refresh rate, where aggregates of nearby

regions are supplied at a faster rate than farther neighborhoods.

1.4 Summary of contributions

• We introduce the idea of applying several variants of random walks for robust and

structure-free data aggregation in MANETs.

• We analytically show that the self-repelling random walk has a cover time ofO(Nlog(N))

in a mobile network that is modeled as a time-varying random geometric graph.

• We empirically characterize the uniformity with which nodes are visited by a self-

repelling random walk in a mobile network. We highlight the importance of this

uniformity characteristic for speeding up data aggregation in MANETs. Note that

in [8], authors have highlighted the uniformity of the self-repelling random walk on

a 2-d lattice. Here, we have extended this study and empirically shown that this

uniformity holds for MANETs under different mobility models.

• We describe a pull-based idea for speeding up self-repelling random walks and achieving

duplicate sensitive data aggregation in MANETs. By adding short multi-hop tempo-

rary gradient to pull tokens, we show that the aggregation time and the number of

messages are bounded in gradient biased self-repelling random walk by O(N) and

O(Nlog(N)) respectively. The gradient formation adds message overhead but we em-

pirically show that the message overhead is compensated by the faster convergence

time.
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• We describe a novel push-based idea for speeding up self-repelling random walks and

achieving duplicate insensitive data aggregation in MANETs. By adding this push

phase, we show that both the aggregation time and the number of messages are

bounded in EZ-AG by O(N). In fact, we show that aggregation is completed in signifi-

cantly less than N token transfers. The protocol is thus extremely simple, requires very

little state maintenance (each node only remembers the number of times it has been

visited), requires no network structures nor clustering. We compare our results with

structure-free techniques for the ODI data aggregation such as gossiping and show a

log(N) factor improvement in messages compared to existing gossip based techniques.

• We provide an extension to the EZ-AG which supplies multi-resolution aggregates to

each node. In the networks that are quite large, providing each node with only a single

aggregate may not be sufficient. Hierarchical EZ-AG addresses this issue by providing

each node with multiple aggregates of neighborhoods of increasing size around itself

using only O(Nlog(N)) messages. Moreover, we also show that aggregates of nearby

regions can be obtained at a progressively faster rate than farther regions. The Hier-

archical EZ-AG outperforms existing techniques for multi-resolution data aggregation

by a factor of log4.4(N).

• We evaluate all our protocols using simulations in ns-3[14] on networks ranging from

100 to 4000 nodes under various mobility models and node speeds. We also evaluate

and compare our protocol with a prototype tree-based technique for data aggregation

and show that our protocol is better suited for MANETs and remains scalable even

under the high mobility. In fact, the performance of random walk based protocols is

seen to improve as node mobility increases.

1.5 Outline of this thesis

This thesis consists of 11 chapters. Chapter 2 discusses related work on random walks

and data aggregation. Chapter 3 discusses the system model, network model, the mobility

model and evaluation metrics. Chapter 4 introduces locally biased random walks. It explains
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the self-repelling random walks and provides an analytical argument for self-repelling ran-

dom walks. Chapter 5 introduces detailed protocol description for gradient biased random

walk and provides an analytical argument for the gradient biased random walk. Chapter 6

introduces EZ-AG. It provides a detailed protocol description and an analytical argument.

In Chapter 7, we talk about hierarchical EZ-AG and explain how hierarchical EZ-AG oper-

ates. An analytical argument and a proof for its cover time and message overhead are also

provided in this chapter. In chapter 8, we compare and contrast different types of random

walks (pure random walk, self-repelling random walk, gradient biased random walk, and

EZ-AG) using ns-3 simulation. In chapter 9, we compare and contrast the EZ-AG with the

prototype tree-based approach known as Aggregate tree protocol. In chapter 10, we discuss

some implementation issues. In Chapter 11, we provide a conclusion.
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Chapter 2

Background work and existing

literature

In this chapter, we describe related work. First, we discuss structure-based protocols that

can be used for data aggregation in static sensor networks. In static sensor networks, the

nodes are stationary and do not move. Thus, structure-based protocols can form either a tree

structure or a network backbone for routing data. However, when mobility is introduced,

these approaches lose the scalability as the mobility breaks the link and requires significant

amount of message for fixing the tree structure or backbone. Then, we discuss some structure-

free protocols that have been used for data aggregation. Existing structure-free protocols do

not have scalability issue. However, they are slow and require more messages to obtain an

aggregate compared to random walk based approaches. Finally, we provide related work on

random walks.

2.1 Structure-based protocols for static sensor networks

The problem of data aggregation and one-shot querying has been well studied in the

context of static sensor networks. It has been shown that in-network aggregation techniques

using spanning trees and network backbones are efficient and reliable solutions for the prob-

lem [1, 2, 3, 4]. However, in the context of a mobile network, such fixed routing structures

are likely to be unstable and could potentially incur a high communication overhead for
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maintenance [5]. In this paper, we have systematically compared EZ-AG with a prototype

tree-based technique for data aggregation and have shown that it outperforms the tree-based

idea in mobile networks. We notice that the improvement gets progressively more significant

as the average node speed increases.

In this subsection, we discuss several structure-based protocols designed for sensor net-

works. The structure-based protocols we discuss in this subsection are designed to form a

tree structure first and use this tree structure to forward/route information to a designated

node. All structure-based protocols use some type of heartbeat message broadcasting. One

such example discussed is a query message. This approach to fixing a broken link has its

trade off. To reduce time required to fix a broken link, the rate of the heartbeat message

needs to be increased. This trade off results in either a lower packet arrival rate (without

having correct topology, information cannot be routed to a designated node) or increased

total messages. Usually, nodes in sensor networks are battery powered with quite a long

expected lifetime. This constrains the total messages required to be as small as possible. If

heartbeat rate is kept low to save energy, data cannot be delivered properly. On the other

hand, if this rate is increased, the number of total messages increases and cannot meet the

energy requirement.

2.1.1 Tiny AGgregation

Tiny Aggregate(TAG) [2] is an example of a structure-based, duplicate-sensitive, data

aggregation protocol. TAG also creates a tree-based structure and utilizes this tree-structure

to forward data from all nodes to a data sink. TAG tries to reduce the total number of

messages by processing aggregates at each node. TAG tries to cope with node mobility and

unstable links in a very similar manner as other structure-based protocols. If a node does not

transmit data for several rounds (i.e., the link to its parent is broken), a node broadcasts a

heartbeat message to advertise itself to its neighbors. The neighbor receiving this heartbeat

message will reply to it. The node sending a heartbeat can fix its broken link using this reply

by making the responder its parent node. It is obvious how fast TAG can detect broken link

and fix topology depending on how quickly heartbeat messages are sent. If this message is
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sent too often, it will consume more energy.

In the data aggregation, losing some intermediate nodes might have a very strong impact

on the resulting aggregate. Authors evaluated the effect of a single loss (a single node in

the tree loses its parent). It turns out the impact of the single loss depends on the type of

aggregate and level of this node. COUNT is shown to be more sensitive to loss than others.

If a node moves out from its parent’s communication range is close to the root of a tree,

significant amounts of data are lost and the resulting aggregate will not be accurate. Such

issue will not happen in our random walk based method. In our method, even the network

is partitioned, a token circulates until the network is joined again.

It is possible to give redundancy to TAG by allowing TAG to use multi-path routing.

By having multiple paths to the root node, the single loss may not break the protocol

completely. Even if some links are broken, there may be still valid path(s) to the root node.

This approach essentially allows more time before all routes to the root node fail. As long

as there is a single valid path to the root node, aggregation can be successfully performed.

However, with multi-path routing, a root node may receive data sent from one node multiple

times as data is routed to the root using all available paths. This duplicated count may

cause an issue with some types of data aggregation.

2.1.2 Synopsis diffusion

In [10], Nath et al. presents a solution to this problem. Nath proposed synopsis diffusion,

a way to utilize multi-path routing while avoiding duplicate counting of identical information.

Synopsis diffusion decouples aggregation and routing by using order and duplicate insensitive

(ODI) synopses. To achieve this, the synopsis, synopsis generation function, synopsis fusion

function, and synopsis evaluation function need to be designed for each type of aggregation.

Some examples on how to design such synopsis functions (generation, fusion, and evaluation)

and synopsis can be found in [10, 15].
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2.1.3 Directed Diffusion

Direct Diffusion [4] is another example of a structure-based approach. Direct Diffusion

tries to route information efficiently to the specified root node. First, a node wanting to find

out something about a network will send a query. The query specifies the data rate and

expiration time of the query. Each node needing to respond query will generate results at

every period specified in the query until this query expires. This query is broadcast from a

root node and all nodes receiving this query will repeatedly rebroadcast it (i.e., flood query).

The received query is registered at each node and a duplicated query will be ignored. After

the initial query, the root node keeps rebroadcasting the same query with a faster data rate.

The duration of this query broadcasting determines how fast direct diffusion can cope with

topology changes.

As direct diffusion utilizes rebroadcasting of messages to fix broken links, it suffers the

same issue as other structure-based protocols. Once a node starts to move, the rate of link

change starts to increase. If we do not reduce the duration at which a root node rebroadcasts

query, the data reception rate will drop significantly. On the other hand, if the duration at

which root node rebroadcast gets smaller, the total number of query messages sent will

drastically increase. At certain speeds or network size, direct diffusion is expected to have

very low packet delivery rate. The number of query replies reaching root drops significantly.

2.1.4 CTP:Collection Tree Protocol

Collection Tree Protocol (CTP)[3] is one example of a tree-based structure approach

which tries to provide reliable, robust and efficiency data collection. CTP tries to route

data from node to closest root node. (CTP works with multiple root nodes.) CTP achieves

this by creating and maintaining a tree-based structure and forwards all data using this tree

structure. CTP maintains tree-structure by periodically broadcasting maintenance packet.

To be reliable, CTP needs to be able to detect broken links and fix these as soon as possible.

If a node has a broken link, the node can update its parent to the sender of maintenance

packet. Thus, how quickly CTP can fix broken links depends on how fast a root node

broadcasts a maintenance packet. This contradicts with efficiency. If there is no broken link,



Masahiro Nakagawa Chapter 2. Background work and existing literature 15

there is no need for maintenance. To obtain better performance, CTP dynamically adjusts

the timer sending the maintenance packet. When CTP detects some link change around

it, it resets the timer to its smallest value. Then it doubles the timer value up to its max

value. This adaptive timer helps CTP to break the trade-off between power consumption

and packet delivery rate.

2.2 Structure-free protocols

Flooding, neighborhood gossip, and spatial gossip are three structure-free techniques that

can be used for data aggregation. Note that flooding data from all nodes to every other node

has a messaging cost of O(N2). Alternatively, one could use multiple rounds of neighborhood

gossip where in each round a node averages the current state of all its neighbors and this

procedure is repeated until convergence [16, 17]. However, this method requires several

iterations and has also been shown to have a communication cost and completion time of

O(N2) for convergence in grids or random geometric graphs, where connectivity is based on

locality [18].

In [11] and [12], a spatial gossip technique is described where each node chooses another

node in the network (not just neighbors) at random and gossips its state. When this is

repeated O(log1+εN) times, all nodes in the network learn about the aggregate state. Note

that this scheme requires O(N.polylog(N)) messages. Our random walk based protocol,

EZ-AG, requires only O(N) messages. Note also that while all this prior work is on static

networks, we demonstrate our results on MANETs.

Table 2.1: Cover time and Hitting time of graphs

Type of graph Hitting time Cover time

Lolipop O(N3) O(N3)
Path O(N2) O(N2)

Complete Graph O(N) O(NlogN)
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2.3 Random walks

There have been several articles on random walks to bound its cover time for different

types of graphs. For instance, a complete graph has a cover time bound of O(Nlog(N)) and

a lollipop graph has a cover time of O(N3) [19, 20, 21]. (See Table 2.1) Typically, dense

and highly connected graphs have a lower cover time that tends to increase as connectivity

decreases [6]. A speed-up by a factor of k has been shown when k independent random walks

are utilized in the graph [22, 23, 24]. In [25] , the authors study cover times of random walks

and lazy random walks on temporal graphs governed by adversarial strategies.

Self-repelling random walks are those in which at each step, a random walk moves to a

neighbor that has been visited the least number of times (with ties broken using a random

choice)[7]. The uniformity with which such random walks explore a graph has been analyzed

in [8]. The analysis [8] shows that the variance in the number of visits at each node is

tightly bounded, resulting in a uniform distribution of visited nodes across the network. In

this thesis, we have exploited this observation to show that the cover time of self-repelling

random walks in mobile networks is O(Nlog(N)). We further show that by using short

temporary gradients to guide the self-repelling random walks, the cover time can be improved

to O(N). Cover time for self-repelling random walks in time-varying graphs (relevant for

mobile networks), has not been previously characterized, to the best of our knowledge.

For static mesh networks modeled as geometric graphs with a uniform degree of connec-

tivity, the expected cover time is known to be O(Nlog2(N)). In this thesis, we have shown

that the cover time can be improved to O(N) with gradient biasing. We also note that

although the cover time for self-repelling random walks has the same upper bound as pure

random walks on geometric graphs, the property of quickly covering a large fraction of nodes

without much exploration is critical for the scalability and cover time bounds of the gradient

biased random walk. In other words, applying the idea of gradients to regular random walks

will not yield improvement in cover time.

We also note that in previous work there has been some empirical evidence of obtaining

an O(Nlog(N)) cover time for static 2-d grids by exploiting some form of choice in random

walks, where preference is given to less visited nodes at each step [6]. There is also empirical
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evidence from previous studies that shows that locally biased random walks visit a significant

fraction of the network without much wasted exploration. In [26], it is empirically observed

that about 80% of the network can be covered in less than N steps, where N is the number

of nodes in the network. These empirical observations further verify the claims made in this

thesis.
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Chapter 3

System Model

In this chapter, we discuss the system model and mobility models used in this thesis.

Also, we explain the metrics we used in our simulation.

3.1 Network Model

We consider a mobile network of N nodes modeled as a geometric Markovian evolving

graph [27]. Each node has a communication range R. We assume that the N nodes are

independently and uniformly deployed over a square region of sides
√
A resulting in a ho-

mogeneous network density ρ = N
A

of the deployed nodes. Consider the region to be divided

into square cells of sides R√
2
. Thus, the diagonal of each such cell is the communication range

R. Let R2 > 2clog(N)
ρ

. It has been shown that there exists a constant c > 1 such that each

such cell has θ(logN) nodes with high probability, i.e., the degree of each node is θ(logN)

with high probability. Such graphs have been referred to as geo-dense geometric graphs [6].

Denote d = θ(logN) as the degree of connectivity.

3.2 Mobility Models

We consider three different mobility models for our evaluations.

• The first is a random direction mobility model (with reflection) [28, 29] for the nodes.

This is a special case of the random walk mobility model [30]. In this mobility model,
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at each interval a node picks a random direction uniformly in the range [0, 2π] and

moves with a constant speed that is randomly chosen in the range [vl, vh]. At the end

of each interval, a new direction and speed are calculated. If the node hits a boundary,

the direction is reversed. The motion of the nodes is independent of each other. An

important characteristic of this mobility model is that it preserves the uniformity of

node distribution: given that at time t = 0 the position and orientation of users

are independent and uniform, they remain uniformly distributed for all times t > 0

provided the users move independently of each other [29, 31].

• The second is random waypoint mobility model. Here, each mobile node randomly

selects one location in the simulation area and then travels towards this destination with

constant velocity chosen randomly from [vl, vh] [30]. Upon reaching the destination,

the node stops for a duration defined by the pause time. After this duration, it again

chooses another random destination and the process is repeated. We set the pause

time to 2 seconds between successive changes.

• The third is Gauss Markov mobility model. In this model, the velocity of mobile node is

assumed to be correlated over time and modeled as a Gauss-Markov stochastic process

[30]. We set the temporal dependence parameter α = 0.75. Velocity and direction are

changed every 1 second in the Gauss Markov Model.

3.3 Metrics

A key metric that we are interested in is the number of times the token is transferred to

already visited nodes. We present this in the form of exploration overhead which is defined

as the ratio of the number of token transfers to the number of unique nodes whose data

has been aggregated into the token. We compute exploration overhead at different stages of

coverage as the random walk progresses.

We note that since we study random walks on mobile networks, the notion of time is also

related to node speed. Moreover, when dealing with wireless networks, time also involves

messaging delays. Therefore, during empirical evaluation we separately characterize the
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actual convergence time (in seconds) along with the number of steps (i.e., number of token

transfers).
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Chapter 4

Local-biasing to speed up random

walks

In this chapter, we discuss the idea of utilizing local information to speed up random

walks. As we mentioned, a random walk is agnostic to a node movement but its cover

time is very long. As a random walk picks one of its neighbor randomly to pass a token,

the token will be passed to same node multiple times before it can cover all the nodes in

the network. To redress this shortcoming, we utilize self-repelling random walks [32]. Self-

repelling random walks were introduced in the 1980s and have been studied extensively in

the physics literature. Self-repelling random walks bias pure random walk using the number

of times each node has been visited so far. Self-repelling random walks give priority to the

node with the least number of visit. (Tie is broken randomly). By doing so, self-repelling

random walks can minimize the total time required to visits all the nodes at least once.

4.1 Self-repelling random walks:Protocol description

To achieve self-repelling random walks, each node stores two variables, holder, and visited.

The variable visited tracks the number of times that a node has been visited by any of the

tokens; visited is initially 0 at all nodes. When a token first arrives at a node, visited is set

to 1. Tokens are assumed to be initiated at a random set of nodes. All nodes in which a

token is initiated are marked as visited by default and the token value is initialized to the
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data at the corresponding node. The variable holder is used to identify nodes that currently

hold a token.

4.1.1 Token passing with self-repelling random walks

For self-repelling random walks, a token holder announces that it has a token. Nodes

that hear this message start a timer to send a request at a random slot within a chosen

interval. The number of intervals is implementation specific. In our simulation, we set the

number of intervals to be 5: [0, ..., Tr
5

],[Tr
5
, ..., Tr

5
∗ 2], ... ,[Tr

5
∗ (4), ..., Tr]. Nodes that have

not been visited start a timer to send a request at a random slot within the first interval

[0, ..., Tr
5

]. Nodes that hear this message and have already been visited once, start a timer

to send a request at a random slot within the second interval [Tr
5
, ..., Tr

5
∗ 2]. Finally, nodes

visited more than four times, start a timer to send a request at a random slot with in the last

interval [Tr
5
∗ (4), ..., Tr]. This ensures that unvisited nodes get a chance to transmit before

visited nodes. Also, if a node hears another request being sent with a value of visited that is

lower than its own, it suppresses its own request. This ensures that the number of requests

being sent remains low and fairly constant irrespective of the network density.

A timer Tr is started at the token holder to accept requests for the token. The token holder

picks a random unvisited node if at least one unvisited node sends a request. Otherwise, the

token holder picks the node that has been least visited. The token is transferred to the chosen

node. The node that receives the token marks itself as visited if it was unvisited so far. If

the token is used for data aggregation, an already visited node may not add its information

again to a token. This concludes the procedure for token passing using self-repelling random

walks. The token is continued to pass iteratively using this procedure.

4.2 Analysis of self-repelling random walks

To begin with, let us prove a lemma that characterizes the expected geometric distance

between unvisited tokens over time. First, we state the following claim regarding the uni-

formity in the distribution of visited nodes during the progression of a self-repelling random

walk.
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Proposition 4.2.1. The distribution of visited nodes (and unvisited nodes) remains spatially

uniform during the progression of a self-repelling random walk.

Argument: Our claim is based on the analysis of uniformity in coverage of self-repelling

random walks in [8] and in [33]. In [8], the variance in the number of visits per node of self-

repelling random walks is shown to be tightly bounded, resulting in a uniform distribution

of visited nodes across the network. More precisely, let ni(t, x) be the number of times a

node i has been visited, starting from a node x. The quantity studied in [8] is the variance

1
N

(
∑

i(ni(t, x)− µ)2), where µ = 1
N

(
∑

i ni(t, x)). It is seen that this variance is bounded by

values less than 1 even in lattices of dimensions 2048 × 2048. A detailed extension of this

analysis for mobile networks is presented in Section 4.3 ,which shows the uniformity with

which nodes are visited during a self-repelling random walk. We use this to infer that even

after the walk started, the distribution of visited nodes (and by that token, unvisited nodes)

remains uniform. The result shows that the self-repelling random walk is not stuck in regions

of already visited nodes - instead, it spreads towards unvisited areas. 2

We have empirically characterized the remarkable uniformity with which self-repelling

random walks visit nodes in a network in Section 4.3.

Lemma 4.2.2. There exists at least one unvisited node within h-hops of a token holder in a

self-repelling random walk with probability p as long as the fraction of unvisited nodes in the

network φu satisfies φu >
1
h2c

.

Proof. Recall that there are d nodes in each cell of size R2

2
with high probability. There are

2A
R2 such cells. Given that a token is in any of these cells, there is one unvisited neighbors

as long as each of the cells has at least one unvisited node. Let nu(t) denote the number

of unvisited nodes at any time t. To find a lower bound on nu(t), we use the analogous

coupon collector problem which studies the expected number of coupons to be drawn from

B categories so that at least 1 coupon is drawn from each category[34, 35]. Using the coupon

collector result[34, 35], if nu(t) > (2A
R2 )(log(2A

R2 ) + γ), then each cell has at least one unvisited

node with high probability. In this case γ = 0.5772 is the Euler-Mascheroni constant. First,

we note the followings:
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log(N)− log(
2A

R2
) = log(

NR2

2A
)

≥ log(
2ρNclog(N)

2ρN
) since R2 =

2clog(N)

ρ
and ρ =

N

A

≥ log(clog(N))

> log(log(N)) since c > 1

> γ since N � ee
γ

for the scale of networks we consider

Therefore, having (
2A

R2
)(logN) unvisited nodes can only increase the chance of having an

unvisited node in each cell. Hence, the required number of unvisited nodes in the network

can be written as:

nu(t) >
2Alog(N)

R2

Recall R2 ≥ 2clog(N)

ρ
. Thus the required number of unvisited nodes can be written as:

nu(t) >
2N

2c

Dividing by N , the fraction of unvisited nodes required so that each node has one unvisited

neighbor can be written as:

φu >
1

c

To generalize this result to the availability of an unvisited neighbor within h hops of

a token holder, we consider cells of sides
hR√

2
which have a diagonal of length hR. Thus,

the required fraction of unvisited nodes so that each node has one unvisited node within h

communication hops can be written as follows, where c > 1.

φu >
1

h2c

Significance: When h = 1 and c = 2,
1

(h2c)
= 0.5. Thus, as long as less than 50%

of the nodes are visited, self-repelling random walks are expected to find an unvisited node

within one hop with high probability. With h = 2, we see that until about 88% coverage,



Masahiro Nakagawa Chapter 4. Local-biasing to speed up random walks 25

an unvisited node can be expected within a 2 hop neighborhood of a token. This highlights

the extent to which bounded self-repelling random walks can cover a significant portion of

the network can be without much wasted exploration and without any supporting network

structures. Note also that when c increases, we expect the degree d (i.e., the number of

nodes in each cell) to increase and hence progressively larger portions of the network can be

visited without much wasted exploration.

Theorem 4.2.3. Both expected cover time and the expected number of token transfer for a

self-repelling random walk in a connected, mobile network of N nodes with uniform stationary

distribution of node locations and a single token are O(N(log(N))).

Proof. From Lemma 4.2.2, we note that the expected number of unvisited neighbors remains

greater than 1 as long as φu >
1

c
. Thus for a fraction (1 − 1

c
) of the nodes, the expected

steps taken by a token is 1.

Once the fraction of visited nodes exceeds (1− 1

c
) , a slowdown is expected because the

token might be randomly traversing an area of already visited nodes. But note that for a

fraction
1

c
− 1

4c
nodes, there exists an unvisited node within 2 hops of a token holder and in

general for a fraction
1

(h− 1)2c
− 1

h2c
nodes, there exists an unvisited node within h hops

of the token holder with high probability. Thus, for a fraction
1

(h− 1)2c
− 1

h2c
nodes, an

expected number of O(h2 ) steps is needed to find an unvisited node. Continuing up to a

maximum of H hops, where H =
√
N , the total number of steps traversed by a token before

visiting all nodes and the expected time for complete coverage is given by the following

expression:

O

((
N− N

c

)
+

(
N

c
− N

4c

)
∗ 4 + . . .+

(
N

(H − 1)2c
− N

H2c

)
H2

)

= O

(
N − N

c
+N

(
3 +

5

4
+ . . .+

(2H + 1)

H2

))

= O

(
N − N

c
+N

H∑
i=1

2i+ 1

i2

)

= O(N + N
H∑
i=1

2

i
+ N

H∑
i=1

1

i2



Masahiro Nakagawa Chapter 4. Local-biasing to speed up random walks 26

= O(N(1 + log(H))) {Euler harmonic series approximiation.}

= O(N(1 + log(N)))

= O(N(log(N)))

Now consider the region to be divided into k equi-sized areas with one token used to visit

node in each area. Thus, each token is responsible for an area of
N

k
. Using this, we state the

following corollary.

Corollary 4.2.4. Both the expected convergence time and the average number of transfer per

token in random walks in a connected, mobile network of N nodes with uniform stationary

distribution of nodes and k tokens are O(
N

k
log(N)).

During performance evaluation, we relax the requirement that each of the k tokens are

restricted to stay within a unique area. We initialize the k tokens uniformly at random

across the network and validate empirically that the above bounds hold.

Using the Proposition, we observe that with
√
N tokens, the expected cover time is

O(
√
N(log(N))). When log(N) tokens are used, the expected convergence time is O(N).

4.3 Uniformity of self-repelling random walk

First, in Fig. 4.1a, Fig. 4.1b and Fig. 4.1c,we show the number of times each node is

visited when the self-repelling random walk has finished visiting 50% of the nodes, 75% of

the nodes and 85% of the nodes. We observe that most of the nodes are just visited once

and this result holds even at 1000 nodes. These graphs highlight the uniformity with which

nodes are visited as self-repelling random walks progress. The self-repelling random walk is

not stuck in regions of already visited nodes - instead, it spreads towards unvisited areas.

Otherwise, one would have observed more duplicate visits to the previously visited nodes. In

Fig. 4.1d, we analyze the distribution of number of visits at each node when 100% coverage

is attained. Here, we see that most nodes are visited 2 or 3 times and the distribution falls

off rapidly after that.

We then compare the uniformity in coverage with that of pure random walks. In Fig. 4.2a,

we plot the number of visits to each node until all nodes are visited at least once for a 500
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Figure 4.1: Distribution of number of visits at each node at different stages of exploration

of a self-repelling random walk (network size 100,500 and 1000 nodes)
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Figure 4.2: Comparison of coverage uniformity with pure random walks

nodes network. In comparison with Fig. 4.2b, we observe that the tail of the distribution is

much longer and the number of duplicate visits is much higher for pure random walks.

4.4 Variant of self-repelling random walks

There is a potential variation of self-repelling random walks: binary self-repelling random

walks. In binary self-repelling random walks, each node only stores if the node has been

visited so far or not. Thus, when all neighbors are visited, it reduces to pure random walks.

In our experiments, we show that binary self-repelling random walks do speed up random

walks but they are slower than self-repelling random walks by constant factor.
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Chapter 5

Gradient Biased Random Walks

In this chapter, we introduce a pull based idea to overcome long tail observed in self-

repelling random walks and provide an analysis of convergence time and total messages.

Self-repelling random walks successfully speeds up random walks but the token can stuck in

the regions of visited nodes while there are still unvisited nodes to be explored. To prevent

this, we set up short, temporary multi-hop gradients to pull the token towards unvisited

nodes. We show analytically that this yields a cover time of O(N). Thus, the order of

convergence improves by a factor of log(N). In doing so, the self-repelling random walk

introduces a gradient message overhead of O(Nlog(N)), to pull tokens towards unvisited

nodes. Nevertheless, this overhead is compensated by a reduction in the required number

of token transfers. In fact, our simulations show that the ratio of token transfers to that of

node size, i.e., the exploration overhead of gradient biased random walk remains constant

(irrespective of network size) and close to 1.

5.1 Gradient Biased Random Walks: Protocol descrip-

tion

Gradient Biased Random Walks consist of two components: (i) token passing, and (ii)

gradient setup. To realize these components, each node stores three variables, visited, holder

and level. The variable visited is a boolean value that tracks whether a node has been visited

by any of the tokens; visited is initially false at all nodes. When a token first arrives at a
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node, visited is set to true. Tokens are assumed to be initiated at a random set of nodes.

All nodes in which a token is initiated are marked as visited by default and the token value

is initialized to the data at the corresponding node. The variable holder is used to identify

nodes that currently hold a token. When a gradient bias is used, each node also participates

in a gradient setup process to attract tokens towards unvisited nodes. To do so, each node

uses the state variable level where 0 ≤ level ≤ 1. Nodes that are unvisited are at level = 1.

Nodes that hold a token set level to 0 as soon as they receive a token.

Token passing with gradient bias

For random walks with a gradient bias, a token holder announces that it has a token.

Nodes that hear this message send a request at a random slot within a chosen interval

Tr. A timer Tr is started at the token holder to accept requests for the token. All nodes

with level > 0 randomize their response time and reply to the token announcement along

with their current level. Nodes with level > 0 are nodes that have either not been visited

(level = 1) or nodes that have been visited and are now part of a gradient (0 < level < 1). If

a node hears another request being sent with a level greater than itself, it suppresses its own

request. The token holder stores all requests received during time Tr. The replies are sorted

based on the level of the requesters and the token is sent to the node with the highest level.

When multiple requesters exist with the same level, the token recipient is chosen randomly

among that set. Thus, if any unvisited node requests a token, the token will be sent to that

node. If all nodes that have currently requested the token have been visited, the token is

sent to the node with the highest value of level, which is expected to be the node that is

closest to an unvisited node. As soon as a token reply has been sent, the node resets holder

to 0. The following section describes how short multi-hop gradients are setup to attract

tokens towards unvisited nodes.

Gradient setup

During the operation of gradient biased random walk, a token can get stuck inside a

region where all its neighbors have already been visited. To recover from such a scenario,

a gradient is setup in the network to attract tokens towards unvisited nodes, i.e., nodes
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with level = 1 (See Fig.1.3). This is done as follows. Nodes with level = 1, for which

none of their neighbors currently hold a token and have at least one neighboring node with

level = 0, initiate a gradient setup by broadcasting a gradient message. Nodes with level = 0

that receive a gradient message update their level to half of sender’s level and rebroadcast

the gradient message. Thus, gradient broadcasts propagate only till the region where nodes

with non-zero level are present, filling up the gap between an unvisited node and other nodes

with non-zero levels.

Gradient refresh

To account for node mobility, gradients have to be periodically refreshed. To do so, when

a node updates its level from zero to some non-zero value < 1, it starts a timer proportionate

to the new level and when the timer expires it resets its level back to 0. Thus, nodes with

higher values of level are refreshed slower than smaller values. This heuristic is based on two

reasons. (1) Gradients should preferably not be refreshed before a token is able to climb up

a gradient and reach an unvisited node. By refreshing at a rate proportional to the value of

level, a token gets more time to reach closer to the source of the gradient. (2) Nodes that

are far away from an unvisited node (closer to the bottom of the gradient) should prevent

blocking of gradient setup from unvisited nodes that are nearby, for extended periods of

time.

5.2 Analysis of gradient biased random walks

.

Theorem 5.2.1. Both expected cover time and the expected number of token transfer with

gradient bias in a connected, mobile network of N nodes with uniform stationary distribution

of nodes and a single token are O(N)

Proof. Similar to the analysis in Theorem 4.2.3, for a fraction (1 − 1
c
) of the nodes, the

expected distance traveled by a token is 1. However, once the fraction of visited nodes
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exceeds 1
c

, the gradients will be used to pull the token towards unvisited nodes. Now note

that a fraction 1
(h−1)2c −

1
h2c

nodes, the expected distance traveled by a token is h.

Continuing up to a maximum distance of H =
√
N , the total average distance traversed

by a token before visiting all nodes and the average time for complete coverage is given by

the following expression:

O

(N− N

c

)
∗ 1 +

(
N

c
− N

4c

)
∗ 2 + . . .+

 N(√
N − 1

)2
c
− N

Nc

√N


= O

(
N +

N

c

(
1 +

1

4
+

1

9
+ . . .+

1

N

))

= O

N +
N

c

√
N∑

i=1

1

i2


= O

(
N(1 +

1

c
)

)
= O(N)

In comparison to Theorem 4.2.3, we note a speed up by a factor of log(N).

Similar to Corollary 4.2.4, we note that with k tokens, the cover time of random walk

with gradient bias is O(N
k

). Thus, with
√
N tokens, the expected cover time is O(

√
N).

When log(N) tokens are used, the expected cover time is O( N
log(N)

). We also verify these

results empirically.

Theorem 5.2.2. The expected gradient message overhead in random walk with gradient bias

in a connected, mobile network of N nodes and k tokens is O(N log(N)
k

).

Proof. Following the lines of Theorem 4.2.3, we note that for a fraction (1
c
− 1

4
) of the nodes,

the average gradient set up cost will be 4c. And, for a fraction ( 1
((
√
p−1)2c)− 1

pc

) of the nodes,

the gradient setup cost will be pc, where pc = N
k

. The result then follows from summing up

the series as shown in the proof of Theorem 4.2.3.
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Thus, we note that when using gradient bias, there is an extra overhead to pull the tokens

towards unvisited nodes, but this is compensated by reduction in the number of required

token transfers and reduction in convergence time. Moreover, the gradient message overhead

decreases linearly with number of tokens.
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Chapter 6

EZ-AG:Push assisted self-repelling

walk

In this chapter, we introduce a push-based self-repelling random walks (EZ-AG) to avoid

long tail observed in self-repelling random walks. EZ-AG achieves this by effectively reducing

the total number of nodes to be visited to complete aggregate. The key idea in EZ-AG is

single step push phase at each node. By allowing a node to hold multiple information,

self-repelling random walks can collect all information (complete data aggregation) without

visiting all the nodes in the network.In our experiment, it is observed that EZ-AG finishes

data aggregation before self-repelling random walks start to slow down. EZ-AG can be used

for duplicate-insensitive data aggregation in MANETs and our analysis shows it outperforms

existing gossip based protocols.

6.1 ODI (order and duplicate insensitive) synopsis

EZ-AG is designed for duplicate-insensitive data aggregation. However, EZ-AG can be

used for duplicate-sensitive data aggregation by utilizing ODI synopsis. ODI synopsis is

designed so that the resulted aggregate is insensitive to the duplication of one item [10].

For example, MIN and MAX are already in the ODI synopsis as the final result is the

same irregardless of the order of aggregation or amount of duplicates present. However,

Sum and Average are not naturally in the ODI synopsis. Therefore, the ODI synopsis
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for each statistical function needs to be defined. To define ODI synopsis, three distinct

functions (the synopsis generator, synopsis fusion and synopsis evaluation) and the form of

synopsis need to be defined. All nodes use the synopsis generation function to convert their

data into synopsis. All nodes route the synopsis to another node(s). The node receiving a

synopsis from other node(s) uses the synopsis fusion function to combine its own synopsis and

received synopsis. Then, it transfers the combined synopsis. This operation is repeated till all

synopsis reach to the root node. The root node uses the synopsis fusion function to combine

its own synopsis and received synopsis. Then, the synopsis evaluation function is applied

to this combined synopsis to obtain the final aggregate value. In [10], several examples

on how to define the synopsis, synopsis fusion function, synopsis generation function, and

synopsis evaluation function for different statistical functions can be found. In the rest of this

subsection, we briefly summarize algorithms found in [10] for generating the ODI synopsis

for some statistical functions.

6.1.1 Count

The goal of Count is to find the total number of distinct items in the network. The item

could be a node that satisfies a pre-defined predicate or some other values obtained from

sensors. To achieve counting, we can utilize the approximate counting algorithm[36]. This

algorithm allows us to approximate the number of distinct items in the multi-set.

This algorithm works as follows. Each element in the set selects one random number r

between [1,k]. (k is the maximum value of the distinct item). Each element calls the CT

function with the selected random number r. The CT(r) function repeatedly flips coins r

times and returns the number of coin flips required to see the head of the coin or r − 1

if no head appears in r trials. Then, it sets CT(r) bit of the synopsis vector to 1. (The

synopsis vector for count is the log(k) bit vector). This operation is repeated for all elements

in the network. In EZ-AG, nodes initiating a token store its synopsis vector in the token

and forward the token to one of its neighbor. The neighbor received tokens, then updates

stored synopsis using the synopsis fusion function. (This combines its synopsis vector and the

synopsis vector in the token using bitwise OR operation.) To obtain the approximate count,
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each node applies the fusion evaluation function to the synopsis. (When EZ-AG terminates

self-repelling random walk, each token holder floods its synopsis vector. Thus, all nodes in

the network obtain synopsis vectors from all token holders.) The fusion evaluation function

searches the most significant bit i of synopsis vector which has been set to 1. Then returns

the value ( 2i−1

0.77351
).

6.1.2 Sum

The sum can be found by extending the approximate count algorithm. Finding the sum

can be turned into a counting problem by replacing the node with the value k with k nodes

having the value of 1. However, this approach may require lots of energy. For node n with

value k, the approximate counting algorithm needs to be applied k times. To avoid this

problem, 2j can be used in place of 2i−1

0.77351
where j is the highest order bit set and i is lowest

order bit set in the synopsis vector [37]. The synopsis for the sum is a vector whose length is

loglog(NK); N is the network size and K is the largest k possible. By using the highest order

bit, the synopsis generation function can be modified. Now, the synopsis generation function

needs to select a random number r and calculate
⌈
−log2(1− r

1
k )
⌉

which is essentially finding

the probability of having the jth bit as the highest order bit. This also affects the synopsis

fusion function. The value we need is j which is the index of the highest order set. Thus,

the fusion function needs to compare two synopsis vectors and selects one that yields larger

value. Please note that this algorithm to find the sum can be used to find other statistics

such as average.[38].

6.1.3 Uniform sample of sensor reading

This aggregate tries to find the uniform sample of X nodes in the network (X < N),

randomly sampling a value that each node holds by picking X elements uniformly random.

The components of this algorithm are defined as follows. The synopsis will be a tuple. The

synopsis generation function outputs (value,r, id) where value is the value stored at the node

specified by the id and r is a random number [0,1] obtained from the uniform distribution.

The synopsis fusion function takes union of two synopsis. After taking union of two tuples,
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only X tuples are selected using the r value. (Sort X tuples in decreasing order using r

values and take X tuples first). If the union resulted in less than X tuples, everything is

kept. Finally, the synopsis evaluation function creates a set of values contained in X tuples.

6.2 EZ-AG: Protocol description

The node requesting the aggregate first initiates a flood in the network to notify all nodes

about the interest in the aggregate. Note that each node broadcasts this flood message

exactly once. This results in N messages.

Once a node receives this request, it pushes its state to its neighbors. Each node uses the

data received from its neighbors to compute an aggregate of the state of all its neighbors.

Note that the push phase also requires exactly N messages.

Soon after the initiator sends out an aggregate request, it also initiates a token to perform

a self-repelling random walk. A node that has the token broadcasts an announce message.

Nodes that receive the announce message reply back with a token request message and include

the number of times they have been visited by the token in this request. The node that holds

the token selects the requesting node which has been visited least number of times (with

ties broken randomly) and transfers the token to that node. This token transfer is repeated

successively. Note that nodes which hear a token announcement schedule a token request

at a random time tr within a bounded interval, where tr is proportional to the number of

times that they have been visited. Thus, nodes that have not been visited or visited fewer

times send a request message earlier. When a node hears a request from a node that has

been visited fewer or same number of times, it suppresses its request. Thus, the number

of requests received for a token announcement remains fairly constant and irrespective of

network density.

In the following section, we prove analytically that the aggregate can be computed from

all nodes in the network with high probability in O(N) token transfers. In the empirical

evaluation, we show that the median number of token transfers is actually only kn, where

0 < k < 1, and k is unaffected by network size. Thus, the median exploration overhead is

less than 1. One can use this observation to terminate the self-repelling random walk after
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exactly N steps and with high probability one can expect that data from all the nodes has

been aggregated.

Once the aggregate has been computed, the result can simply be flooded back to all

the nodes. This requires O(N) messages. Another potential solution (when aggregate is

only required at a base station) is to transmit the aggregated tokens using a long distance

transmission link (such as cellular or satellite links) in hybrid MANETs where the long links

are used for infrequent, high priority data.

The protocol is thus extremely simple, requires very little state maintenance (each node

only remembers the number of times it has been visited), requires no network structures or

clustering.

6.3 Analysis of EZ-AG

In this section, we first show that the aggregation time and message overhead for push

assisted self-repelling random walks is O(N). We consider a static network for our analysis.

In section 8.4.3, we evaluate the protocol under different mobility models and verify that the

results hold even in the presence of mobility.

Theorem 6.3.1. The required number of messages for data aggregation by EZ-AG in a

connected, static network of N nodes with uniform distribution of node locations is O(N).

Proof. We note that the aggregation request flood and the result dissemination flood require

O(N) messages. During the push phase, each node broadcasts its state once and this also

requires only N messages. Now, we analyze the self-repelling random walk phase.

Consider the region to be divided into square cells of sides R√
2

(see Fig 6.1). Thus the

diagonal of each such cell is the communication range R. Recall from our system model that

each such cell has θ(logN) nodes with high probability at all times and there are O( N
log(N)

)

such cells. Therefore, at the end of the push phase, each node has aggregated information

about its θ(logN) cell neighbors. Also note that the network can be divided into θ( N
log(N)

) sets

of nodes that each contain information about θ(log(N)) nodes within their cell. Therefore,

the self-repelling random walk has to visit at least one node in each cell to finish aggregating
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Figure 6.1: Proof synopsis: Consider the region divided into square cells with diagonal size

R. At the end of single step push phase, each node has information about all nodes in its

cell. So it is sufficient for the token (performing a self-repelling random walk) to visit one

node in each cell to finish aggregation.

information from all nodes.

To analyze the number of token transfers required to visit at least one node in each cell,

we use the analogous coupon collector problem (also known as the double dixie cup problem)

which studies the expected number of coupons to be drawn from B categories so that at

least 1 coupon is drawn from each category [35]. To ensure that at least 1 coupon is drawn

from each category with high probability, the required number of draws is O(BlogB). Using

this result and the fact that a self-repelling random walk traverses a network uniformly, we

infer that O(( N
log(N))

∗ log( N
log(N)

)) token transfers are needed to visit at least 1 node in each

of the θ( N
log(N)

) cells.

Note that log(N) > log( N
log(N)

). Hence, the required number of messages for the push

assisted self-repelling random walk based aggregation protocol is O( N
log(N)

∗ log(N)), i.e.,

O(N).

Note that in the presence of mobility, the node locations with respect to cells may not be

preserved during the push phase. Therefore the generation of θ( N
log(N)

) identical partitions

of network state as described in the above analysis may not exactly hold. However, in

section 8.4.3 we empirically ascertain that kN token transfers (where k < 1) are still sufficient

to aggregate data from all nodes even in the presence of mobility. In fact, we observe that
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the required token transfers actually decrease with increasing speed, indicating that data

aggregation using self-repelling random walks is actually helped by mobility.

It follows from the above result that the total time for aggregation is also O(N). The

impact of network effects such as collisions on the message overhead and aggregation time

(if any) will be evaluated in Section 8.4.
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Chapter 7

Hierarchical aggregation

When a network is quite large, providing each node with only a single aggregate for the

entire network may not be sufficient. It may be more useful to provide each node with a

distance-sensitive multi-resolution aggregate, i.e., to provide aggregate information about

neighborhoods of increasing sizes around itself. In this chapter, we describe how EZ-AG

can be extended to provide such multi-resolution synopsis of nodes in a network with only

O(Nlog(N)) messages.

Existing techniques for such hierarchical aggregation require O(Nlog5.4(N)) messages

[11]. Thus, EZ-AG offers a poly-logarithmic factor improvement in terms of number of

messages for hierarchical aggregation. Moreover, EZ-AG can also be used to generate hi-

erarchical aggregates that are distance-sensitive in refresh rate, where aggregates of nearby

regions are supplied at a faster rate than farther neighborhoods.

7.1 Protocol description

We divide the network into square cells at different levels (0, 1, ... P ) of exponentially

increasing sizes (shown in Fig. 7.1). At the lowest level (level 0), each cell is of sides R√
2
.

Recall from our system model that each such cell has θ(log(N)) nodes with high probability.

For simplicity, let us denote θ(log(N)) by the symbol δ. Thus, there are N
δ

cells at level 0.

Note that 4 adjoining cells of level i constitute a cell of level i + 1. Thus, each cell at level

j has δ4j nodes with high probability. At the highest level P , there is only one cell with all
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the N nodes. Note that P = log4(
N
δ

). At any given time, a node belongs to one cell at each

level.

To deliver multi-resolution aggregates, we introduce a token and execute EZ-AG at each

cell at every level. A token for a given cell is only transferred to nodes within that cell and

floods its aggregate to nodes within that cell. Thus, there are N
δ

instances of EZ-AG at level

0 and each instance computes aggregates for δ nodes, i.e., θ(logN) nodes.

The computation and dissemination of aggregates by different instances of EZ-AG are

not synchronized. Thus, a node may receive aggregates of different levels at different times.

Also, since the nodes are mobile, an aggregate at level l received by a node at any given time

corresponds to the cell of the same level l in which it resides at that instant.

Figure 7.1: Extension of EZ-Ag to deliver multi-resolution aggregates: The network is par-

titioned into cells of increasing hierarchy where the cell at smallest level is of diagonal R.

The node y shown in the figure would receive an aggregate corresponding to one cell at each

level that it belongs to. In this case, it would receive aggregates for cells A, B, C and D.

The largest cell D consists of the entire network.

7.2 Analysis of Hierarchical EZ-AG

Theorem 7.2.1. An ODI aggregate at level j can be computed using hierarchical EZ-AG in

O(4jδ) time and messages.
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Proof. Note that each cell at level j contains θ(4jδ) nodes with high probability. Therefore,

using Theorem 6.3.1, EZ-AG only requires O(4jδ) time and messages to compute aggregate

within the cell.

We note from the above theorem that aggregates at level 0 can be published every O(δ)

time, aggregates at level 1 can be published every O(4δ) time and so on. Thus, aggregates

for cells at smaller levels can be published exponentially faster than those for larger cells.

Thus, if the tokens repeatedly compute an aggregate and disseminate within their respective

cells, EZ-AG can generate hierarchical aggregates that are distance-sensitive in refresh rate,

where aggregates of nearby regions are supplied at a faster rate than farther neighborhoods.

Theorem 7.2.2. Hierarchical EZ-AG can compute an ODI aggregate for all cells at all levels

using O(Nlog(N)) messages.

Proof. Note that a cell at level 0 contains δ nodes and there are N
δ

such cells. The aggregate

for cells at level 0 can be computed using O(δ) messages.

In general, there are N
4jδ

cells at level j and aggregates for these cells can be computed

using O(4jδ) messages. Summing up from levels 0 to P , the total aggregation message cost

(M) for hierarchical EZ-AG can be computed as follows.

M = O

(
40 ∗ N

40δ
+ 41δ ∗ N

41δ
+ ...+ 4log4Nδ ∗ N

4log4Nδ

)

= O

(
P∑
j=0

(
4jδ

N

4jδ

))

= O
P∑
j=0

(N)

= O (Nlog(N)) since, P = log4(
N

δ
)

Thus, hierarchical EZ-AG can compute an ODI aggregate for all cells at all levels using

O(Nlog(N)) messages.
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Chapter 8

Performance Evaluation of different

types of Random Walks

In this chapter, we systematically evaluate the performance of different types of random

walks using simulation in ns-3. We set up MANETs ranging from 100 to 4000 nodes using the

network models described in section 3.1. Nodes are deployed uniformly in the network with

a deployment area and communication range such that R2 = 4log(N)
ρ

. Thus, the network is

geo-dense with c=2, i.e., each node has on average 2log(N) neighbors with high probability.

We test such networks in our simulations with the following mobility models: 2-d random

walk, random waypoint, and Gauss-Markov (described in 3.2). The average node speeds

range from 3 to 21 m/sec.

8.1 Comparing random walks: Pure vs self-repelling

vs gradient biased self-repelling random walks

In this section, we compare all three random walks pure random walks, self-repelling

random walks, and gradient biased self-repelling random walks under 2-d random walk mo-

bility model. The difference in convergence characteristics is illustrated, where we show the

convergence pattern in a single randomly chosen trial of 500 nodes. In this particular trial,

we observe that until around the 80% mark, the self-repelling random walk proceeds on par

with gradient biased self-repelling random walk, but it slows down slightly after this point.
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Figure 8.1: Convergence pattern on network of 500 nodes for a given trial with and without

bias

This is because, until this point the self-repelling random walk enables a token to find an

unvisited node directly (within 1 hop) and there are very few wasted explorations. A more

pronounced slowdown for self-repelling random walk is noticed around 90% , whereas a pure

random walk is slow throughout. After this point, there are wasted explorations in finding

unvisited nodes when only self-repelling is used, where as the self-repelling random walk

with gradient proceeds at a uniform rate throughout.

The average and 95% percentile of 100% cover time for three types of random walks

is shown Fig. 8.2. As we can see, self-repelling random walks and gradient biased self-

repelling random walks successfully speeds up the random walks. Also, the gradient biased

self-repelling random walks achieves 100% coverage faster. This shows that the self-repelling

random walks successfully pulled tokens toward the unvisited nodes.



Masahiro Nakagawa Chapter 8. Performance Evaluation of different types of Random Walks 46

100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Pure random walk
Self−repelling random walk
Gradient biased random walk

10
0%

 C
ov

er
 T

im
e 

(S
ec

on
ds

)

Network Size

(a) Convergence time vs network-size (average)

100 200 300 400 500 600 700 800 900 1000
0

250

500

750

1000

1250

1500

1750

2000
pure random walk
self−replliing random walk

10
0%

 C
ov

er
 T

im
es

 (
S

ec
on

ds
)

Network Size

gradient baised random walk

(b) Convergence time vs network-size (95% per-

centile)

Figure 8.2: Analysis of exploration overhead

8.2 Analysis of Self-repelling random walk vs Gradient

biased self-repelling random walk

In this section, we compare self-repelling random walks and gradient biased self-repelling

random walks using exploration overhead and cover time (time required to visit all nodes

in the network) as our metrics. The cover time gives us more direct understanding of how

long each protocol requires to compute total aggregation. However, the cover time is quite

implementation specific and incorporates messaging latency in the wireless network. For

instance, in our implementation each transaction (i.e., each iteration of token announcement,

token requests and token passing) took on average 250 msec. But this number could be much

smaller using methods such as [39] that use collaborative communication for estimating

neighborhood sizes that satisfy given predicate. Thus, we also use the exploration overhead

which indicates the number of token passing transactions required for coverage.

The 100% cover time is shown in Fig. 8.2a and Fig. 8.2b.
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Figure 8.3: Analysis of exploration overhead

8.2.1 Convergence characteristics

We analyze exploration overhead for self-repelling random walks in more detail in Fig. 8.3a

which plots the ratio of token transfers to the number of visited nodes at different stages of

coverage for self-repelling random walks (averaged over multiple trials). This ratio captures

the wasted explorations where a token is repeatedly passed to already visited nodes. We see

that with self-repelling random walks, the ratio stays low and close to 1 until about 80%

mark and then starts rising. The observation matches our result in Lemma 4.2.2. But the

token passing overhead for gradient biased self-repelling random walks remains close to 1

throughout without any sharp rise at all network sizes as seen in Fig. 8.3b. In Fig. 8.3b, we

compare the exploration overhead at different network sizes with 100% coverage. We observe

that for self-repelling random walks, this ratio grows at log(N), while for the gradient bias it

is almost flat, matching our results in Theorem 4.2.3 and Theorem 5.2.1. Redundant token

passes are very low with gradient bias.
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Figure 8.4: Analysis of message overhead for self-repelling random walk with and without

gradient

8.2.2 Message overhead

In Fig. 8.4, we compare the message overhead of self-repelling random walks and gradient

biased self-repelling random walks. To highlight the log factor overhead, we show messages

normalized by network size on y-axis and network size on x-axis. The values for token

message with gradient bias stay constant indicating that the token messages grow linearly

with network size as the values are normalized. The curve for self-repelling token messages

and the gradient setup messages grows at log(N), indicating a Nlog(N) messaging overhead.

Note that the gradient setup cost in gradient biased random walk is compensated by a signif-

icant reduction in the required token messages compared to the self-repelling scheme. These

results show that gradient biased self-repelling random walks achieve superior performance

both in terms of cover time and message overhead over that of self-repelling random walks,

despite the use of short multi hop gradients.
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Figure 8.5: Analysis of cover time with multiple tokens

8.2.3 Multiple tokens

First, we quantify the impact of using
√
N tokens and log2(N) tokens. Fig. 8.5a shows

the cover time with
√
N tokens in the network for self-repelling random walks and gradient

biased self-repelling random walks. The network sizes that we simulate are 125, 250, 500,

1000, 2000, and 4000 nodes. The corresponding number of tokens used in the network is 11,

15, 22, 31, 42, and 63 respectively. We observe that the coverage time grows only at O(
√
N),

matching our analysis. In Fig. 8.5b, we show the impact of using log2(N) tokens. The

network sizes that we simulated are 125, 250, 500, 1000, 2000, and 4000. The corresponding

number of tokens used in the network is 7, 8, 9, 10, 11, and 12 respectively. Here, the trend

is observed to be linear.

Next, in Fig. 8.6a, we analyze the cover time as a function of number of tokens. The

network size is 500 and the number of tokens is varied from 1 to 22. We notice that the

cover time decreases linearly with the number of tokens, matching our analysis. In Fig. 8.6b,

we compare the messaging overhead for the same scenario. For gradient biased self-repelling

random walks, we see that the gradient message overhead decreases linearly with the number

of tokens. The token passing overhead for gradient bias stays roughly constant, because there
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is very little overhead to begin with. The token passing overhead for self-repelling random

walks decreases linearly with number of tokens.
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Figure 8.6: Analysis of cover time and message overhead for N = 500

8.2.4 Impact of mobility model

We simulated gradient biased random walks, and self-repelling random walks under other

mobility models, random way and Gauss Markov. The node speeds remain in the range of

2 - 4 m/sec. For a random way point, the pause time is set to 2 seconds between successive

changes. In the Gauss Markov model, where motion characteristics are correlated with time,

tuned with a parameter α. (We set α = 0.75). Velocity and direction are changed every 1

second in the Gauss Markov Model. For the random walk mobility model, it is known that

the stationary distribution of the nodes is almost uniform [29]. However, for the random

waypoint model on a 2-d network, it is known that the uniformity distribution of nodes is

not maintained (nodes tend to cluster towards the center). The uniformity properties of

Gauss Markov model are unknown. From Fig. 8.7a and 8.7b, we observe that the cover

time indicating robustness with respect to mobility model especially for gradient biased

self-repelling random walks.
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Figure 8.7: Impact of mobility

8.2.5 Impact of node speed

To highlight that gradient biased self-repelling random walks are robust with respect to

the rate of mobility induced link changes, we simulated gradient biased self-repelling random

walks under different node speeds. As observed in Fig. 8.8, even as the average node speed

increases to 15 m/sec, the cover time remains quite steady.

8.2.6 Gradient biased random walk in sparse networks

In this section, we evaluate self-repelling random walks and gradient biased self-repelling

random walks when the geo-dense property of network deployment does not hold. In other

words, we choose a communication range that is constant (irrespective of network size)

and does not meet the connectivity threshold. Thus, the network may be partitioned at

times and the node degree may not be uniform at all times. Specifically, we have chosen

R2 = 4
ρ

in the following results. In Fig. 8.9a, we observe that the number of token transfers

exhibits a similar trend to that of geo-dense networks for both self-repelling random walks

and gradient biased self-repelling random walks. In comparison with Fig. 8.5a, we observe
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Figure 8.8: Impact of node speed

that the improvement offered by gradient biased self-repelling random walks with gradient

biasing over that of self-repelling random walks is far grater in this case. This is because,

the use of gradients allows a token to be quickly transferred to unvisited nodes even when

the network becomes connected momentarily. Self-repelling random walks spend more time

in exploring for unvisited nodes and may not be able to utilize temporary moments when

the network is connected.

In Fig. 8.9b, we show the impact of higher network speed on self-repelling random walks

in such sparse networks. We observe that the cover time improves with network speed in

this case. This is probably explained by the fact that at higher speeds, nodes which are

temporarily disconnected from the portion that has a token, tend to converge with the

connected component sooner and thus reduce the long tail in cover time.
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Figure 8.9: Impact of density(Sparse network)
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Figure 8.10: Exploration overhead as a function of network size for locally biased random

walks and self-repelling random walks
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8.3 Binary self-repelling random walks vs self-repelling

random walks

In this section, we compare self-repelling random walks with a special case of the same

in which nodes only keep track of whether they are visited and do not keep track of the

number of times they have been visited. When all neighboring nodes have been visited, the

token is transferred to a visited node chosen uniformly at random among the visited nodes.

Thus, until there is at least one neighbor that has not been visited, the action at each node

is identical to that of self-repelling random walks. When all neighbors have been visited, the

locally biased random walks are reduced to pure random walks. We observe from Fig. 8.10

that the performance of such locally biased random walks is quite similar to the self-repelling

random walks and the latter offers a constant factor of improvement. A detailed analysis of

such locally biased random walks can be found in [9].

8.4 Self-repelling random walks vs EZ-AG
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Figure 8.11: Exploration overhead at 100% coverage as a function of network size for self-

repelling random walks and EZ-AG
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Here, we compare the convergence characteristics of pure random walks with that of self-

repelling random walks and push-assisted self-repelling random walks. To compare these

characteristics we used exploration overhead.

8.4.1 Convergence characteristics

In Fig. 8.3a, we show the exploration overhead of self-repelling random walk during

different stages of coverage. As seen in Fig. 8.3a, until about 85% coverage, self-repelling

random walks have an exploration overhead of around 1 (irrespective of network size) but

then the overhead starts to rise sharply. This is because, until this point self-repelling

random walks enable a token to find an unvisited node directly and there are very few

wasted explorations. A slowdown for self-repelling random walk is noticed after this point.

As a result, the exploration overhead at 100% coverage is close to 2 and moreover it increases

with network size. This is what we aim to address using EZ-AG.

The exploration overhead at 100% coverage is shown in Fig. 8.11a and Fig. 8.11b for

self-repelling random walks and EZ-AG (i.e., push-assisted self-repelling random walks). As

seen in the figure, the exploration overhead for self-repelling random walks grows with a

logarithmic trend due to the wasted explorations towards the tail end of the random walk

phase when most of the nodes have already been visited. The push assisted self-repelling

random walks remove these wasted explorations and as a result the median exploration

overhead stays constant at all network sizes and is actually less than 1 (approximately 0.75

as seen in Fig. 8.11a).

8.4.2 Message and Time

In Fig. 8.13a and Fig. 8.13b, we show the total aggregation time and the total number of

messages as a function of network size for the aggregation protocol based on push-assisted

self-repelling random walks. The total number of messages required to complete the data

aggregation includes the push messages, the messages involved in the self-repelling random

walk phase, and the messages involved in disseminating the result to all the nodes using a

flood. Note that, each token transfer step itself consists of announcement, token request and
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Figure 8.12

token transfer messages. These are all included in Fig. 8.13b ,which shows that the messages

grow linearly with network size.

An interesting aspect of the token transfer procedure is the number of requests generated

for a token during each iteration. Note that the average number of neighbors increases as

θ(logN) when the network size increases. However, from Fig. 8.12a, the number of token

requests per transfer is seen to be independent of the number of neighbors. From the box

plot of Fig. 8.12a, we observe that the average number of token requests in each trial is in

the range of 1 − 3. This is because nodes that are visited less often send a request earlier

than those that are visited more. And, if a node hears a request from a node that has been

visited less often than itself, it suppresses its request. Thus, irrespective of the neighborhood

density, the number of token requests per node stays constant.

As seen in Fig. 8.13a, the total aggregation time also exhibits a linear trend. Note that the

measurement of time is quite implementation specific and incorporates messaging latency

in the wireless network. For instance, in our implementation each transaction (i.e., each

iteration of token announcement, token requests and token passing) took on average 25msec.
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But this number could be much smaller using methods such as [39] that use collaborative

communication for estimating neighborhood sizes that satisfy given predicates.
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Figure 8.13: Total time and messages

8.4.3 Impact of mobility model and speed

In Fig. 8.14, we evaluate the impact of node mobility on the exploration overhead of

EZ-AG. We observe that even though random waypoint and Gauss Markov models do not

preserve the uniform distribution of node locations, the exploration overhead exhibits a

similar trend. As seen in Table 1.1, the network structure is rapidly changing at the speeds

chosen for evaluation. Despite this, in Fig. 8.15a, we observe that the exploration overhead

actually starts decreasing with node speed (this is shown more clearly in Fig. 8.15b for

networks with different sizes).
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Figure 8.14: Analysis of exploration overhead over different mobility model
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8.5 Gradient biased self-repelling random walks vs EZ-

AG

In this section, we compare the convergence characteristics of gradient biased self-repelling

random walks and EZ-AG. Both protocols are designed for data aggregation and have the

same cover time O(N). Note that these two protocols aim for different types of data aggre-

gation: duplicate sensitive and duplicate insensitive, respectively.

There are two reasons to introduce EZ-AG. Firstly, EZ-AG improves required message

bound from O(Nlog(N)) to O(N). Secondly, EZ-AG is faster than gradient biased self-

repelling random walks by some constant factor. In remaining section we will provide a

comparison between EZ-AG and gradient biased self-repelling random walks to prove this

point.
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Figure 8.16: Comparison between EZ-AG and Gradient biased

In Fig. 8.16a, we show the exploration overhead of gradient biased self-repelling random

walks and EZ-AG. The exploration overhead is observed to be constant over all node sizes for

both cases. However, EZ-AG shows some constant factor improvement when it is compared

to gradient biased self-repelling random walks. (Approximately 0.5 in this case). This shows
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that if an aggregate is duplicate insensitive, EZ-AG could calculate the aggregate faster than

gradient biased self-repelling random walks.

In Fig. 8.16b, we show the total message required to compute aggregate. The total mes-

sages for EZ-AG contains two floods and a self-repelling random walk. As seen in Fig. 8.16b,

EZ-AG outperforms the gradient based random walks. Also EZ-AG has linear growth which

matches with our analysis in chapter 6. On the other hand, the total message for gradient

biased self-repelling random walks show nonlinear trends.

As we can see from Fig. 8.16, EZ-AG outperforms the gradient biased self-repelling

random walks in terms of both aggregation time and the total messages. Thus, we conclude

that it makes sense to apply EZ-AG when the aggregation is duplicate insensitive type.



61

Chapter 9

Comparison against tree based

approach

In this section, we compare the performance of EZ-AG with a structured approach for one-

shot duplicate insensitive data aggregation that involves maintaining network structures such

as spanning trees. For our comparison, we use a prototype tree-based protocol (aggregate

tree protocol) that we describe briefly. Unlike existing data aggregation protocols for static

networks [3, 2], aggregation tree protocol periodically refreshes the underlying tree structure

to cope with mobility of the node. Other than that, the idea of aggregation tree protocol

is very similar to existing data aggregation protocol for static sensor networks. Also, we

compare EZ-AG with existing gossip protocol.

9.1 Aggregate Tree Protocol

First, we discuss the data structure maintained at each node under aggregate tree pro-

tocol. Each node creates a fixed size transmission buffer and receiving buffer. The structure

of this buffer is implementation dependent. For this comparison, the buffer is implemented

as a ring buffer (i,e,. when the buffer gets full, a new item replaces the oldest item). The

transmission buffer is used to store the data originated from itself or its children. On the

other hand, receiving buffer stores the data originating from its children.

The node wanting to find an aggregate over the network initiates tree creation and tries to
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maintain it. A node initiates data aggregation by flooding a request message in the network.

This request message contains a sequence number and ETX value which specifies the depth

of the tree. Thus, each time a request message is flooded, this ETX value is incremented by

1. Nodes receiving request message will first check if this is the first request message they

have received. If this is the first message, nodes receiving the message will set its parent as

the sender of request message and set its ETX value. After this initial update, there are

two things each node does. 1) Schedule a data transmission to its parents. The duration of

the timer is randomly picked from an interval of 0 msec to 50 msec. 2) Broadcast a request

message with updated ETX value.

A node transmits all the data in the transmission buffer when the scheduled timer expires.

The parent receiving this message first searches its receiving buffer for duplication. If an

identical message is found, the parent node drops this message. If there is no duplication, it

will add the message to the receiving buffer. If there is some message already stored in the

transmit buffer, a node opportunistically aggregates message into one packet to reduce the

message size.

A message can be lost due to the node mobility or wireless link condition. To handle this,

a node keeps transmitting messages until either it receives an acknowledgment or reaches its

maximum retry count. However, this approach is not sufficient to handle messages loss due

to node mobility. If the loss of acknowledgment is caused by node mobility, a node needs

to relinquish its parent and find a new parent. The initiator node will periodically send

a request message with the same sequence number until it receives all data (i.e., initiator

needs to know the total node count in advance). The key point is this request message has

the same sequence number as the original message so that the node can distinguish which

request is for the message. The node exhausting maximum retry count will clear its state

and wait for a periodic request message to find its new parent node. This way, a node that

lost its parent can obtain a new parent and continue to send/forward data.
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Figure 9.1: Comparison of time and messages for EZ-AG and tree-based protocol at different

node speeds

9.2 Total time and message with different node speed

In this subsection, we compare total message and time required by aggregation tree

protocol and EZ-AG over different node speeds. For this simulation the node size is fixed

to 500 nodes. In Fig. 9.1a, we observe that aggregate tree protocol performs slightly better

compared to EZ-AG on static network (node speed of 0 m/sec). This shows that for a static

network, having efficient routing information benefits data aggregation. However, as the

node speed increases, the total message for EZ-AG starts to decrease while total messages

for aggregate tree protocol increases. At node speed of 21 m/sec, aggregate tree protocol

requires more than four times as many messages. This shows as the link change gets frequent,

EZ-AG quickly catches up with aggregate tree protocol and outperforms it. This is because

as the node speed increases, the link change increases and aggregate tree protocol has more

wasted messages (message transfer to invalid parent) and message to refresh tree structure.

As seen in Fig. 9.1a, aggregate tree protocol quickly loses its advantage of having an efficient

route for forwarding data once node starts to move.

In Fig. 9.1b, we plotted total time under the same conditions. As seen in Fig. 9.1b,
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total time shows very similar trend as message. As the node speed increases, the total time

required decreases for EZ-AG and increases for aggregate tree protocol. Again this is due

to the rate of link change. As the link change gets more frequent, aggregate tree protocol

needs to refresh its underlying tree. The message needs to stay in the transmit buffer till

node finds a new parent node.
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Figure 9.2: Comparison of time and messages for EZ-AG and tree-based protocol at different

network size

In Fig. 9.2, we fixed average node speed (3 m/sec) and plotted total message and time

over different node size. In both cases, we observe that EZ-AG has a linear trend. The total

messages grows linearly as network size increases. On the other hand, aggregate tree protocol

shows hyper linear trend. Please note that as network size increases the total message for

EZ-AG gets smaller than that of aggregate tree protocol. Again, this is due to the rate

of link change. As node size increase, the chance of losing a new neighbor increases. This

causes the large number of re-transmission for aggregate tree protocol.

Our observations show that as the rate of link change increases (either due to node size

or average node speed), aggregate tree protocol starts to spend more time and message to

refresh its underlying tree and loses the advantage of having efficient routing.
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Figure 9.3: Projected number of messages per node for hierarchical EZ-AG and multi-

resolution spatial gossip

9.3 Comparison with gossip techniques

In [11] and [12], a spatial gossip technique is described where each node chooses another

node in the network (not just neighbors) at random and gossips its state. When this is

repeated O(log1+ε(N)) times (where ε > 1), all nodes in the network learn about the aggre-

gate state. Note that this scheme requires O(N.polylog(N)) messages. EZ-AG requires only

O(N) messages.

In [11], an extension to the spatial gossip technique is described which provides a multi-

resolution synopsis of the network state at each node. The technique described in [11] requires

O(Nlog5.4(N)) messages. The hierarchical extension of EZ-AG only requires O(NlogN)

messages. The difference is actually quite significant at larger network sizes as seen in

Fig. 9.3a, where we show the analytically projected difference in messages transmitted per

node for hierarchical EZ-AG and multi-resolution spatial gossip [11].
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Chapter 10

Discussion

In this chapter, we discuss some issues and optimization techniques that are not related

to the core idea of using random walks for data aggregation, but nevertheless are important

in the context of implementing our protocols in a MANET.

10.1 Reliable token transfer

Reliable token transfer is critical for successful operation. If a token is released by a

node, but the intended recipient did not receive the token reply message, the token is lost.

At the same time, if the sending node relies on acknowledgments to release a token, it is

possible that the acknowledgments are lost and duplicate tokens are created. For applications

where duplicate counting is not permitted (such as duplicate-sensitive aggregation), this is a

problem. This issue can be addressed in practice by using acknowledgments in conjunction

with checkpoints. The procedure is described below.

As soon as a token reply has been sent, the sender releases the token (the node resets

holder to zero). At the same time, it remains in a waiting state for acknowledgments from the

recipient. If an acknowledgment is not received within a time Ta, the token send message

is repeated up to a maximum of K re-tries. If the recipient receives the token multiple

times, it simply repeats the acknowledgment message. However, if the token sender does

not receive the acknowledgment even after K retries, it creates a checkpoint for the token:

(a) the aggregate computed thus far is appended to the token along with the token id, (b)
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a fresh token id is created (unique ids can be created by simply assigning a node’s id to the

token during creation) and (c) the token aggregate is reset. It is possible that the token was

actually successfully passed, but even in this case the checkpoint will not create duplicate

counting. At the same time, the process ensures that data is not lost.

10.2 Termination detection

Gradient biased random walk

When using gradient biased random walk, termination can be deterministically detected.

Note that when all nodes have been visited, the gradient setup will be terminated because

the gradient setup is only initiated by nodes that have not been visited. As a result, a node

that holds a token will continue to get only a level 0 reply for its token announcement. If a

gradient is being setup, there would be at least one neighboring node with a value of level

> 0. Therefore, when nodes holding the token get a level 0 reply from all its neighbors over

an interval greater than the gradient refresh interval, the holder nodes can conclude that all

nodes in the network have been visited.

Self-repelling random walks

In contrast, when using self-repelling random walks, there is no deterministic way to

detect termination. However, as the percentage of visited nodes increases, the ratio of

token transfers to the visited nodes starts increasing. This ratio may be used to design an

approximate threshold for termination detection. Moreover, the result in Fig. 8.3a shows

the expected ratio of token transfers to the visited nodes at different levels of coverage with

self-repelling random walk. In this figure, we see that until about 80− 90% coverage, there

is very little variance in the token passing overhead ratio across different network sizes.

Therefore, these values can be used to determine approximate thresholds for terminating a

self-repelling random walk trial at a desired level of coverage, irrespective of network size.
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EZ-AG

In Fig. 10.1a, we show the variation in exploration overhead for EZ-AG over 50 different

trials at different network sizes. We observe that irrespective of network size, for 97.5% of

the trials, the exploration overhead is smaller than 1. We can use this data to design a

terminating condition for the random walk phase of the protocol. For example, we could

terminate the random walk phase after exactly N steps, and then start the dissemination of

the aggregate.
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Figure 10.1

10.3 Token ex-filtration

Once the initiated tokens have visited all nodes, it is necessary to ex-filtrate the tokens

to a given location such as the operating base station or to one or more querying nodes

in the network. Instead of using structures to route these aggregates towards querying

nodes, a simple solution is to simply flood the aggregate tokens across the network in O(D)

time (where D is the network diameter) with an O(Nk) message overhead where k is the
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number of tokens. This leads to a potential question: why not use flooding or diffusion

based approaches all the way? Note that the cost of disseminating data from each node

to all other nodes is O(N2) where N is the number of nodes in the network. By using a

fixed number of k tokens to first compute the aggregates and then flooding the aggregates,

the message overhead for flooding is only O(Nk). Thus, our bounds on message overhead

remain unaffected.

Note that other structure-free solutions are also possible for token ex-filtration. For

instance, another potential solution is to transmit the k aggregated tokens using a long

distance transmission link (such as cellular or satellite links) in hybrid MANETs where the

long links are used for infrequent, high priority data.
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Chapter 11

Conclusion

11.1 Conclusion

In this thesis, we presented robust, scalable, structure-free protocols for duplicate-sensitive

and duplicate-insensitive data aggregation in MANETs. First, we observed that pure random

walks have a very high exploration overhead and this causes the cover time to be very high.

Then, we introduced self-repelling random walks designed to improve this high exploration

overhead. The approach taken by self-repelling random walks is to bias neighbor nodes using

the number of time each neighbor has been visited so far. This simple approach guarantees

that the token is always passed to the unvisited neighbor if one is available. This very simply

approach shows the significant reduction in the exploration overhead and improves the cover

time. With this simple approach, the complexity of the cover time is reduced to an order

of O(Nlog(N)). Also, we empirically show the uniformity of self-repelling random walks on

different mobility models.

However, self-repelling random walks show a long tail behavior. Once a self-repelling

random walk covers a certain percentage of the nodes, the exploration overhead starts to

increase. This cannot be avoided because, as the coverage increases, the chance of having

unvisited neighbor(s) decreases. Eventually, all neighbors of token holder become visited

nodes. In this case, a token keeps visiting already visited node till it hits the node which

has unvisited neighbor. All token transfers performed till the token reaches the node with

unvisited neighbor(s) increase the exploration overhead. To mitigate this long tail behavior,
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we proposed gradient biased random walks to pull tokens towards unvisited nodes. Gradient

biased random walks have a cover time of O(N), avoid a long tail and significantly reduce

the cover time as well as exploration overhead.

We quantified the performance of gradient biased random walks under different network

conditions. Our analysis shows that gradient biased random walks always outperform pure

random walks and self-repelling random walks under all of these conditions. We showed

that gradient biased random walks have very little state overhead and is naturally resilient

to topology changes of MANETs.

Then, we introduced the duplicate-sensitive data aggregation protocol in MANETs that

exploits the simplicity and efficiency of self-repelling random walks: EZ-AG.We showed that

by complementing self-repelling random walks with a single step push phase, EZ-AG can

achieve duplicate-insensitive data aggregation in O(N) time and messages. In terms of

message overhead, EZ-AG outperforms existing structure free gossip protocols by a factor

of log(N). We quantified the performance of EZ-AG using ns-3 simulations under different

mobility modes. We also showed EZ-AG outperforms structure based protocols in mobile

networks and the improvement gets increasingly significant as average node speed increases.

We also described a hierarchical extension to EZ-AG that provides multi-resolution ag-

gregates of the network state to each node. It outperforms existing technique by a factor of

O(log4.4N) in terms of number of message.

Lastly, we want to point out that our protocols are lightweight in terms of resource re-

quirements and make rather minimal assumptions of the underlying network. In particular,

it does not assume knowledge of node addresses or locations, require a neighborhood dis-

covery service or network topology information, or depend upon any particular routing or

transport protocols such as TCP/IP. A key implication is that our protocol is suitable for

heterogeneous networks (and radio platforms).
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