6,340 research outputs found

    Technical innovation changes standard radiographic protocols in veterinary medicine: is it necessary to obtain two dorsoproximal-palmarodistal oblique views of the equine foot when using computerised radiography systems?

    Get PDF
    Since the 1950s, veterinary practitioners have included two separate dorsoproximal–palmarodistal oblique (DPr–PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr–PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1–3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr–PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure

    Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether

    Full text link
    The Gas Pixel Detector belongs to the very limited class of gas detectors optimized for the measurement of X-ray polarization in the emission of astrophysical sources. The choice of the mixture in which X-ray photons are absorbed and photoelectrons propagate, deeply affects both the energy range of the instrument and its performance in terms of gain, track dimension and ultimately, polarimetric sensitivity. Here we present the characterization of the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME) at 0.79 atm, selected among other mixtures for the very low diffusion coefficient. Almost completely polarized and monochromatic photons were produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg diffraction at nearly 45 degrees. For the first time ever, we measured the modulation factor and the spectral capabilities of the instrument at energies as low as 2.0 keV, but also at 2.6 keV, 3.7 keV, 4.0 keV, 5.2 keV and 7.8 keV. These measurements cover almost completely the energy range of the instrument and allows to compare the sensitivity achieved with that of the standard mixture, composed of helium and DME.Comment: 20 pages, 11 figures, 5 tables. Accepted for publication by NIM

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    Experimental Comparison of Empirical Material Decomposition Methods for Spectral CT

    Get PDF
    Material composition can be estimated from spectral information acquired using photon counting x-ray detectors with pulse height analysis. Non-ideal effects in photon counting x-ray detectors such as charge-sharing, k-escape, and pulse-pileup distort the detected spectrum, which can cause material decomposition errors. This work compared the performance of two empirical decomposition methods: a neural network estimator and a linearized maximum likelihood estimator with correction (A-table method). The two investigated methods differ in how they model the nonlinear relationship between the spectral measurements and material decomposition estimates. The bias and standard deviation of material decomposition estimates were compared for the two methods, using both simulations and experiments with a photon-counting x-ray detector. Both the neural network and A-table methods demonstrated a similar performance for the simulated data. The neural network had lower standard deviation for nearly all thicknesses of the test materials in the collimated (low scatter) and uncollimated (higher scatter) experimental data. In the experimental study of Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 11–28%, which was reduced to 0.1–11% using the proposed empirical methods. Overall, the results demonstrated preliminary experimental feasibility of empirical material decomposition for spectral CT using photon-counting detectors

    Demonstration of relativistic electron beam focusing by a laser-plasma lens

    Full text link
    Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line

    The Supernova-Gamma Ray Burst Connection

    Get PDF
    Supernovae 1998bw and its corresponding relativistically expanding radio source are coincident with the \grb source GRB 980425. We show that of six recent SN Ib/c for which an outburst epoch can be estimated with some reliability, four have radio outbursts and all are correlated in time and space with BATSE \grbs. The joint probability of all six correlations is 1.5×105\times10^{-5}. No such correlation exists for SN Ia and SN II. The \gr\ energy associated with the SN/GRB events is 10461048\sim10^{46} - 10^{48} ergs if emitted isotropically. Economy of hypotheses leads us to propose that all \grbs are associated with supernovae and that the \grb events have a quasi-isotropic component that cannot be observed at cosmological distances and a strongly collimated and Doppler-boosted component that can only be seen if looking nearly along the collimation axis. Such collimation requires a high rate of occurrence perhaps consistent with a supernova rate. The collimated flow may be generated by core collapse to produce rotating, magnetized neutron stars. All core collapse events may produce such jets, but only the ones that occur in supernovae with small or missing hydrogen envelopes, Type Ib or Ic, can propagate into the interstellar medium and yield a visible \grb. We suggest that asymmetries in line profiles and spectropolarimetry of SN II and SN Ib/c, pulsar runaway velocities, soft \gr repeaters and \grbs are associated phenomena.Comment: Submitted to ApJL on May 19, 1998. Revised on Jun 15, 199

    Does collimation affect patient dose in antero-posterior thoraco-lumbar spine?

    Get PDF
    BACKGROUND: The purpose of this study is to determine the effect of collimation on the lifetime attributable risk (LAR) of cancer incidence in all body organs (effective risk) in patients undergoing antero-posterior (AP) examinations of the spine. This is of particular importance for patients suffering from scoliosis as in their case regular repeat examinations are required and also because such patients are usually young and more susceptible to the effects of ionising radiation than are older patients. METHOD: High sensitivity thermo-luminescent dosimeters (TLDs) were used to measure radiation dose to all organs of an adult male dosimetry phantom, positioned for an AP projection of the thoraco-lumbar spine. Exposures were made, first applying tight collimation and then subsequently with loose collimation, using the same acquisition factors. In each case, the individual TLDs were measured to determine the local absorbed dose and those representing each organ averaged to calculate organ dose. This information was then used to calculate the effective risk of cancer incidence for each decade of life from 20 to 80, and to compare the likelihood of cancer incidence when using tight and loose collimation. RESULTS: The calculated figures for effective risk of cancer incidence suggest that the risk when using loose collimation compared to the use of tight collimation is over three times as high and this is the case across all age decades from 20 to 80. CONCLUSION: Tight collimation can greatly reduce radiation dose and risk of cancer incidence. However collimation in scoliotic patients can be necessarily limited

    CT Coronary Angiography with 100kV tube voltage and a low noise reconstruction filter in non-obese patients: evaluation of radiation dose and diagnostic quality of 2D and 3D image reconstructions using open source software (OsiriX)

    Get PDF
    INTRODUCTION AND PURPOSE. Computed tomography coronary angiography (CTCA) has seen a dramatic evolution in the last decade owing to the availability of multislice CT scanners with 64 detector rows and beyond. However, this evolution has been paralleled by an increase in radiation dose to patients, that can reach extremely high levels (>20mSv) when retrospective ECG-gating techniques are used. On CT angiography, reduction of tube voltage allows to cut radiation dose with improved contrast resolution due to the lower energy of the X-ray beam and increased photoelectric effect. Our purpose is twofold: 1) to evaluate the radiation dose of CTCA studies carried out using a tube voltage of 100kV and a low noise reconstruction filter, compared with a conventional tube voltage of 120kV and a standard reconstruction kernel; 2) to assess the impact of the 100kV acquisition technique on the diagnostic quality of 2D and 3D image reconstructions performed with open source software (OsiriX). MATERIALS AND METHODS. Fifty-one non-obese patients underwent CTCA on a 64-row CT scanner. Out of them, 28 were imaged using a tube voltage of 100kV and a low noise reconstruction filter, while in the remaining 23 patients a tube voltage of 120kV and a standard reconstruction kernel were selected. All CTCA datasets were exported via PACS to a Macintosh™ computer (iMac™) running OsiriX 4.0 (64-bit version), and Maximum Intensity Projection (MIP), Curved Planar Reformation (CPR), and Volume Rendering (VR) views of each coronary artery were generated using a dedicated plug-in (CMIV CTA; Linköping University, Sweden). Diagnostic quality of MIP, CPR, and VR reconstructions was assessed visually by two radiologists with experience in cardiac CT using a three-point score (1=poor, 2=good, 3=excellent). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), intravascular CT density, and effective dose for each group were also calculated. RESULTS. Image quality of VR views was significantly better with the 100kV than with the 120kV protocol (2.77±0.43 vs 2.21±0.85, p=0.0332), while that of MIP and CPR reconstructions was comparable (2.59±0.50 vs 2.32±0.75, p=0.3271, and 2.68±0.48 vs 2.32±0.67, p=0.1118, respectively). SNR and CNR were comparable between the two protocols (16.42±4.64 vs 14.78±2.57, p=0.2502, and 13.43±3.77 vs 12.08±2.10, p=0.2486, respectively), but in the 100kV group aortic root density was higher (655.9±127.2 HU vs 517.2±69.7 HU, p=0.0016) and correlated with VR image quality (rs=0.5409, p=0.0025). Effective dose was significantly lower with the 100kV than with the 120kV protocol (7.43±2.69 mSv vs 18.83±3.60 mSv, p<0.0001). CONCLUSIONS. Compared with a standard tube voltage of 120kV, usage of 100kV and a low noise filter leads to a significant reduction of radiation dose with equivalent and higher diagnostic quality of 2D and 3D reconstructions, respectively in non-obese patients
    corecore