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Abstract: Material composition can be estimated from spectral information 

acquired using photon counting x-ray detectors with pulse height analysis. 

Non-ideal effects in photon counting x-ray detectors such as charge-sharing, 

k-escape, and pulse-pileup distort the detected spectrum, which can cause 

material decomposition errors. This work compared the performance of two 

empirical decomposition methods: a neural network estimator and a 

linearized maximum likelihood estimator with correction (A-table method). 

The two investigated methods differ in how they model the nonlinear 

relationship between the spectral measurements and material decomposition 

estimates. The bias and standard deviation of material decomposition 

estimates were compared for the two methods, using both simulations and 

experiments with a photon-counting x-ray detector. Both the neural network 

and A-table methods demonstrated similar performance for the simulated 

data. The neural network had lower standard deviation for nearly all 

thicknesses of the test materials in the collimated (low scatter) and 

uncollimated (higher scatter) experimental data. In the experimental study of 
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Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 

11–28%, which was reduced to 0.1–11% using the proposed empirical 

methods. Overall, the results demonstrated preliminary experimental 

feasibility of empirical material decomposition for spectral CT using photon-
counting detectors. 

I Introduction 

Photon-counting x-ray detectors with pulse height analysis 

provide spectral information, which can be used to estimate material 

composition.1 In the ideal case, the mathematical relationship between 

material composition and detected spectral data is known and can be 

inverted to estimate composition of an unknown material.2,3 Photon 

counting detectors exhibit non-ideal behaviors such as charge-sharing, 

k-escape, and pulse-pileup.4 These detector effects distort the 

detected spectrum, which can cause material decomposition errors. In 

the presence of nonideal effects, additional information is needed to 

accurately decompose a material from the acquired spectral 

information. One approach is to explicitly model the individual non-

ideal detector effects5,6,7 and incorporate them into the decomposition 

methods such as maximum likelihood estimation (MLE). Model 

parameters may be determined from synchrotron or isotope 

measurements.1,7 An alternative approach uses system data to train or 

calibrate an empirical material decomposition estimator.8,9,10 The 

estimator learns the behavior of the system-specific detector without 

explicitly modeling the individual detector effects. 

This work compared the performance of two empirical material 

decomposition methods: a neural network estimator11 and the A-table 

method (linearized MLE + correction)9 through simulations and 

experiments. The empirical methods were previously investigated 

through simulations assuming ideal photon-counting detectors, without 

consideration of spectral degradations that occur in realistic photon-

counting detectors.9,11 This study will compare the methods on an 

experimental photon-counting system. The two investigated methods 

differ in how they model the nonlinear relationship between the 

spectral measurements and material decomposition estimates. The 

neural network attempts to directly model the nonlinear relationship. 

The A-table method assumes a linear relationship, followed by an 

empirical correction. The purpose of this work was to compare the bias 
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and standard deviation of two approaches for ideal simulated data and 

experimental data with a photon-counting detector. The nonlinearity in 

the relationship between spectral measurements and material 

decomposition estimates is expected to increase in the presence of 

non-ideal detector effects. The experimental study will investigate 

whether directly modeling the nonlinear relationship using neural 

networks improves material decomposition estimates in the presence 

of non-ideal detector effects. 

II Methods 

II.A Theory 

When an x-ray photon strikes a photon-counting detector, the 

photon is converted to electrical charge proportional to the energy of 

the incoming photon. The charge is converted to a voltage using 

charge-integrating amplifiers. Analog comparators increment a digital 

counter when the voltage of the accumulated charge exceeds a set 

threshold level. At the end of an acquisition, a counter measures the 

number of photons detected with energy above the threshold. Energy 

bin data corresponding to the number of photons detected between 

two threshold levels can be obtained by subtracting consecutive 

counter measurements. 

We consider the case of an x-ray measurement through a 

material of thickness x and attenuation coefficient μ(E). The x-ray 

attenuation through this material is equivalent to the attenuation of a 

unique combination of any two other materials (in the absence of K-

edges), as expressed in Equation 1, where μ1(E) and μ2(E) are the 

energy-dependent attenuation coefficients of each basis material and 

a1 and a2 are the path lengths of each basis material.2 This 

decomposition is possible because there exist two primary attenuation 

phenomena in the diagnostic x-ray energy range: Compton scattering 

and photoelectric absorption. 

𝑥𝜇(𝐸) = 𝑎1𝜇1(𝐸) + 𝑎2𝜇2(𝐸) 
(1) 
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Using the basis expansion in Equation 1, the number of photons 

detected in the ith energy bin, ni, of an ideal photon-counting detector 

can be calculated as,  

𝑛𝑖(𝐀) = ∫ 𝑆(𝐸)
𝐸𝑖+1

𝐸𝑖

exp [−∑𝑎𝑗𝜇𝑗(𝐸)

𝑀

𝑗=1

] 𝑑𝐸 

(2) 

where S(E) is the x-ray source spectrum and aj, the elements of A, are 

the thicknesses of M basis materials having attenuation coefficients 

functions, μj. The spectral measurements are represented as a vector 

of detected photon counts, N = [n1, n2,…, nK]T, where K is the number 

of energy measurements. 

Material decomposition involves estimating the basis material 

thicknesses, A, from the acquired spectral data, N. One method of 

estimating the basis material thicknesses, A, from the number of 

detected photons, N is to numerically invert Equation 2, for example 

using statistical estimation algorithms such as MLE.3 In the case of an 

ideal detector, MLE provides minimum variance, unbiased material 

decomposition estimates.3 However, in the presence of realistic 

detector effects, such as pulse pileup and charge sharing, MLE will 

introduce decomposition errors unless the effects are accurately 

modeled in Equation 2.1 

This work investigated two empirical material decomposition 

methods that were trained or fitted to approximate the relationship 

between the log-normalized energy-bin data vector, L = [l1, l2,…, lK]T, 

and the basis material thickness vector, A, which is expressed in 

Equation 3,  

𝑙𝑖(𝐀) = −ln
𝑛𝑖(𝐀)

𝑛𝑖(𝟎)
 

(3) 

where 0 is the zero vector and ni(0) is the number of photon counts 

through air in energy bin, i. 
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II.A.1 Neural network estimator  

One decomposition approach studied in this work used a neural 

network to approximate the functional relationship between the log-

normalized energy-bin data, L, and the basis material thicknesses A, 

as illustrated in Figure 1. The motivation for using a neural network 

was to directly model the nonlinear relationship between the spectral 

measurements and basis material thicknesses. A feed-forward neural 

network using one hidden layer can approximate a continuous function 

arbitrarily well, according to the universal approximation theorem.12 In 

this work, the neural network architecture consisted of an input layer, 

a hidden layer, and an output layer. The hidden processing elements 

used sigmoid activation functions and the output processing elements 

used linear activation functions. The outputs of the two output-layer 

processing elements were the basis material thickness estimates. 

 
Figure 1. A two-layer neural network estimator diagram shown with three hidden 

processing elements. The neural network was trained by acquiring spectral projections 
of known basis material thicknesses. After training, material decomposition was 
performed by estimating basis material thicknesses from acquired spectral projections 
through an arbitrary object. 

The neural network estimates the basis material thicknesses 

from the spectral measurements through non-iterative mathematical 

operations consisting of additions, multiplications, and function 

evaluations as described in Equation 4,  
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𝐀̂ = 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝐖𝑜𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐖ℎ𝐋 + 𝐛ℎ) + 𝐛𝑜) 
(4) 

where flinear and fsigmoid are linear and sigmoidal functions, Wh and Wo 

are matrices of network weights for the hidden and output layers, and 

bh and bo are vectors of network biases for the hidden and output 

layers, respectively. The matrices and vectors, Wh, Wo, bh, and bo, are 

calculated during the training process in which the neural network is 

given log-normalized energy bin data from known thicknesses of the 

basis materials. During training, the Levenberg-Marquardt 

backpropogation algorithm iteratively calculates the network weights 

and biases (Wh, Wo, bh, and bo) that minimize the mean square error 

between the estimated basis material thicknesses and the known 

calibration thicknesses.13 

The complexity of the neural network model is parameterized by 

the number of processing elements in the hidden layer. As the number 

of hidden processing elements increases, the bias is expected to 

decrease while the variance in the estimates is expected to increase 

due to overfitting to the training data. This tradeoff and the selection 

of hidden processing elements will be investigated in Section II.C. 

II.A.2 A-table estimator  

The second decomposition method investigated in this work was 

the A-table method, which was previously found to have better noise 

performance than the well-known polynomial approximation.9 The A-

table method is based on a linear approximation to the relationship 

between the log-normalized energy-bin data and the basis material 

thicknesses (Equation 3). Using a first-order Taylor series expansion, 

the approximate linear relationship is:  

𝐋(𝐀) ≈ 𝐌𝐀 + 𝑤 
(5) 

where M is referred to as the effective linear attenuation coefficient 

matrix and w is multivariate white noise. In the A-table method, the M 

matrix is estimated through a calibration procedure that is similar to 

the neural network calibration, in which log-normalized energy-bin 
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data is obtained from measurements through known basis material 

thicknesses. The effective linear attenuation coefficient matrix M is 

estimated as the least squares approximate linear solution relating the 

calibration vectors Lcalibration and Acalibration. Once the linear attenuation 

coefficient matrix M has been estimated from the calibration data, the 

basis material thicknesses of an unknown material can be estimated 

from log-normalized energy data using the linearized maximum 

likelihood estimate,  

𝐀LMLE = (𝐌𝑇𝐑𝐋∣𝐀
−1𝐌)

−1
𝐌𝑇𝐑𝐋∣𝐀

−1 𝐋 
(6) 

where ALMLE are the estimated basis material thicknesses, and R−1L∣A 

is the inverse of covariance matrix between log-normalized energy 

bins. Both M and R−1L∣A are estimated from calibration data. 

The linear approximation expressed in Equation 5 introduces 

errors in the estimated basis material thicknesses. As part of the 

published A-table calibration, the estimated basis material thicknesses 

ALMLE are compared to the known true material thicknesses used for 

calibration. The errors in the estimated basis material thicknesses are 

stored in look-up tables, for each basis material. The error data are fit 

to a smooth surface over the entire calibration region. Using Equation 

6, the log-normalized energy data, L, is used to calculate ALMLE. The 

errors, δ(ALMLE), in ALMLE are determined from the look up tables and 

used to correct ALMLE and produce the final basis material thickness 

estimates, Â. 

𝐀̂ = 𝐀LMLE + δ(𝐀LMLE) 
(7) 

II.B Calibration 

Both the neural network and A-table decomposition methods 

require calibration data that consist of varying combinations of known 

basis material thicknesses and their corresponding energy-bin 

measurements. The basis material thicknesses used for calibration 

should span the range of attenuation expected in the imaged object. 

http://dx.doi.org/10.1088/0031-9155/60/8/3175
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459606/#FD5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459606/#FD6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459606/#FD6


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Physics in Medicine and Biology, Vol 60, No. 8 (2015): pg. 3175-3191. DOI. This article is © Institute of Physics and 
permission has been granted for this version to appear in e-Publications@Marquette. Institute of Physics does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from 
Institute of Physics. 

8 

 

Polymethyl methacrylate (PMMA) and aluminum were used as basis 

materials throughout this study because their chemical compositions 

span a large range of materials. These materials are also easily 

obtainable and machinable for experimental studies. For both the 

simulation and experimental studies, the calibration data consisted of 

projections through combinations of PMMA (0 to 4 bars; 2.54 cm each) 

and aluminum (0 to 4 bars; 1.27 cm each), as depicted by the circle 

markers in Figure 2. Calibration is required for each detector element, 

due to variations in energy responses across detector elements. For 

the A-table implementation, the calibration data generated an 133 × 

529 look-up table for each detector element. For the neural network 

method, the calibration data was used to train a neural network for 

each detector element. 

 
Figure 2. This plot represents the decomposition space used throughout this study. 
The circles represent basis material thicknesses used for calibration. The X’s represent 
combinations of materials used to test the estimators and to determine the number of 

hidden processing elements. 
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II.C Determining the number of hidden processing 

elements 

The number of hidden processing elements in the neural 

network, nH, is related to the number of free parameters used to fit the 

input/output relationship. Complex features and nonlinearities in the 

functional mapping can be fitted using a large number of hidden 

processing elements. An excessive number of hidden processing 

elements in the neural network has a potential to overfit the 

calibration data causing poor generalization in the estimates. 

To select the number of hidden processing elements, the neural 

network was first trained using the calibration dataset. Training was 

performed with the number of hidden processing elements, nH, varied 

from 1 to 20. The neural network resulting from each nH setting was 

used to decompose projection measurements of different thickness 

combinations of the two basis materials. The test data consisted of 

projections through thicknesses of PMMA (1.27 cm to 8.89 cm in 2.54 

cm increments) and aluminum (0.318 cm to 2.22 cm in 0.635 cm 

increments). The test data interlaced the calibration data, as plotted in 

Figure 2. For each number of hidden processing elements, the mean 

absolute error in the neural network basis material thickness estimates 

was calculated. The number of hidden processing elements, nH, was 

selected as the smallest number of hidden processing elements that 

minimized the mean absolute error of the two basis material 

estimates. 

II.D Quantifying estimator performance 

To evaluate the performance of the estimators, two different 

types of tests were performed. The first test quantified how well the 

methods estimated the thicknesses of the two basis materials for basis 

material combinations not seen during calibration. This test quantified 

the ability of the decomposition methods to approximate the functional 

relationship between the basis material thicknesses and the log-

normalized energy bin data. The same test data was used as in the 

study for determining the number of hidden processing elements 

(Figure 2). For both the neural network and A-table estimators a total 

of 41 projection measurements were used as the calibration data and 
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40 projection measurements were used as the test data. For this test, 

the ground truth was the true basis material thicknesses used in the 

experiments. 

The second test quantified how well the estimators decomposed 

new materials into basis material thicknesses. This test quantified the 

ability of an estimator to generalize to materials other than the basis 

materials. For both the simulation and experimental study, the test 

materials were Teflon (1 to 4 bars; 1.27 cm each), Delrin (1 to 4 bars; 

1.27 cm each), and neoprene (2 to 5 bars; 0.635 cm each). These test 

material thicknesses were chosen because they spanned the PMMA / 

Aluminum calibration region. For this test, the ground truth basis 

material thicknesses of these test materials were the thicknesses 

estimated by MLE using noise-free simulations that assumed the 

material attenuation coefficients and densities from the NIST XCOM 

database. 

Our goal was to compare the bias and standard deviation of the 

two estimators (neural network and A-table). The bias, relative to the 

ground truth, and standard deviation of the estimated basis material 

thicknesses could be used as evaluation metrics. However these 

evaluation metrics are problematic for both estimates of bias and 

standard deviation. The bias or percent bias does not take into account 

the relative contribution of the two basis materials. For example, if a 

test material is similar to one basis material (large contribution of one 

basis material), small bias in the estimated thickness of that material 

could introduce large error in how well the decomposition coefficients 

represent the attenuation of the test material. Conversely, a large bias 

in the basis material with smaller contribution may not impact the 

overall estimated attenuation function. Comparing the standard 

deviation of the estimated basis material thicknesses does not consider 

the covariance between the two basis material estimates.5 To 

overcome these evaluation issues, a metric of total attenuation was 

used in this study, which was the bias and standard deviation of the 

linear attenuation coefficient at one energy as estimated using the 

basis material thicknesses. To calculate this metric, the estimated 

basis material thicknesses were first converted to basis coefficients c1 

and c2 by dividing the estimated basis material thickness, Â, by the 

known thickness of the test material slabs (x in Equation 1). Using 

Equation 8, the linear attenuation coefficient at 70 keV was estimated 
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for each test material using the estimated basis coefficients and the 

basis material attenuation curves from the NIST XCOM database.14 

𝜇(𝐸) = 𝑐1𝜇1(𝐸) + 𝑐2𝜇2(𝐸) 
(8) 

The energy of 70 keV was selected because it was found to 

optimize monoenergetic image noise for smaller phantoms in a 

previous dual energy study.15 The metrics used to compare the 

material decomposition methods were the bias relative to the ground-

truth 70 keV attenuation coefficient obtained from the XCOM database, 

and the percent standard deviation, which were calculated as follows:  

bias(𝐀̂)

=
|
1
𝑚
∑ [𝑐1,𝑖𝜇PMMA(70) + 𝑐2,𝑖𝜇A1(70)]
𝑚
𝑖=1 − 𝜇test(70)|

𝜇test(70)
 

(9) 

 

std(𝐀̂)

=
√ 1
𝑚 − 1

∑ [𝑐1,𝑖𝜇PMMA(70) + 𝑐2,𝑖𝜇A1(70) − 𝜇̅(70)]
2𝑚

𝑖=1

𝜇test(70)
 

(10) 

where m was the number of trials, c1,i and c2,i were the estimated basis 

material coefficients for each trial (Equation 8) and μPMMA, μAl, and μtest 

were the linear attenuation coefficient functions from the XCOM 

database. 

II.E Simulation study 

Simulations were performed to compare the neural network and 

A-table methods for a detector with an ideal energy response. The 

simulations modeled acquisitions with an ideal five-bin detector, 100 

kV spectrum, Poisson noise, and 2 × 106 photons per measurement, 

which is comparable to the number of photons detected through air in 
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the experimental study. The detector energy thresholds were set to 

25, 40, 50, 60, and 70 keV and measurements from adjacent 

thresholds were subtracted to create two-sided energy bins of [25–

40], [40–50], [50–60], [60–70], and [70–100] keV. These energy 

thresholds were determined empirically and were not optimized. One 

hundred trials were simulated for each test condition. 

II.F Experimental Study 

The performance of the neural network and A-table estimators 

was also quantified by experiments using a photon counting detector 

with non-ideal energy response. The bench-top energy-resolved CT 

system consisted of a cadmium zinc telluride (CZT) detector (NEXIS, 

Nova R&D, Riverside, CA), with two rows of 128, 1x1 mm detector 

elements and a Hamamatsu L9181-02 x-ray source. The detector can 

sort detected photons into five bins at a maximum rate of 2 × 106 

counts/s/mm2. The methods were evaluated at 100kV and 40 μA for 

11 seconds (3 × 105 counts/s/mm2). For all studies, the detector 

energy thresholds were set to 25, 40, 50, 60, and 70 keV and 

measurements from adjacent thresholds were subtracted to create 

two-sided energy bins of [25–40], [40–50], [50–60], [60–70], and 

[70–100] keV. 

The same thicknesses of PMMA, aluminum, Teflon, Delrin, and 

neoprene used in simulations were used experimentally. There were 

five trials of individual thicknesses of Telfon, Delrin and neoprene to 

assess the performance of the estimators. Another five trials of 

individual thicknesses of Teflon, Delrin, and neoprene were acquired 

after a duration of approximately one hour to evaluate the effect of 

system instability on the estimator performance. A representative 

detector element in the middle of the detector was used for the 

analysis of the estimators. The covariance matrix used in the A-table 

method, RL|A, was calculated from 100 trials measured at the center of 

the calibration grid (5.08 cm PMMA and 1.27 cm aluminum). 

In order to investigate the effects of scatter on the material 

decomposition methods, calibration projections and test projections 

were acquired with the beam collimated to the two-row detector (low 

scatter) and without beam collimation (high scatter). 
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The spectral response of photon-counting detectors is degraded 

by effects such as pulse-pileup and charge sharing, which can 

introduce error in material decomposition estimates.4,7 To investigate 

how much the experimental measurements deviated from ideal 

measurements, the experimental Teflon measurements were also 

decomposed using a maximum likelihood estimator that assumed an 

ideal detector.3 In practice, the non-ideal effects would be incorporated 

into the maximum likelihood estimator to reduce error.7,1 This work 

used a maximum likelihood estimator that assumed an ideal detector 

to quantify the potential error due to non-ideal effects, which was then 

compared to the performance of the neural network and A-table 

estimators. 

The neural network and A-table estimators were also compared 

with respect to decomposed basis material CT images. Analyzing the 

basis images and reconstructed 70 keV monoenergetic image provided 

a means for comparing the estimator across numerous detector 

elements. CT data were experimentally acquired of a 6.35-cm-

diameter cylindrical phantom containing rods of PMMA, low-density 

polyethylene (LDPE), air, and Teflon, as seen in Figure 3. CT data were 

acquired with the 2-mm beam collimation. Two CT trials were 

performed, each with two hundred projections acquired over 360° with 

0.019 mAs per projection angle. The five energy-bin sinograms were 

decomposed into basis sinograms using both the neural network and 

A-table estimators, where the basis sinogram values represented the 

estimated path length through the basis materials. The basis 

sinograms were reconstructed into basis material images using filtered 

backprojection, where the pixel values were the unit-less coefficients 

representing the contribution of the basis material to the overall linear 

attenuation (the c’s in Equation 8). 
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Figure 3. Cylindrical PMMA rod phantom (6.35-cm diameter) consisting of PMMA, 
LDPE, and Teflon inserts (1.9-cm-diameter) that was used in the experimental CT 
study. 

A 70 keV equivalent image was calculated as a weighted sum of 

the basis material images, where each basis image was weighted by 

the linear attenuation coefficient of the respective basis material at 70 

keV, as described in Equation 8. 

A circular region of interest (ROI) was extracted from the 

Teflon, LDPE, and PMMA regions of the rod phantom. The bias of mean 

values estimated in each ROI was calculated relative to the true linear 

attenuation coefficient of the material at 70 keV, as expressed in 

Equation 11, where the true attenuation coefficient, μmaterial, was 

obtained from the NIST XCOM database.14 
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bias(ROImaterial) =
|𝜇ROI − 𝜇material|

𝜇material
 

(11) 

In addition to the nonuniformities that cause ring artifacts in 

conventional CT, photon-counting spectral CT images contain 

increased ring artifacts due to detector element threshold variations 

and instability of the photon counting detector.16,17 To prevent the ring 

artifacts from affecting the estimation of noise standard deviation, the 

70 keV images resulting from the two trials were subtracted to create 

noise-only images. The standard deviation in each ROI of the noise-

only image was calculated and divided by 2√ to adjust for the 

increased standard deviation due to subtraction. 

III Results 

III. A Number of hidden processing elements 

The absolute error in the neural network basis material 

thickness estimates using varying numbers of hidden processing 

elements is shown in Figure 4. The absolute error in both PMMA and 

aluminum reached a minimum at nH = 3 in simulations and, nH = 5 in 

collimated experiments, and nH = 3 in uncollimated experiments. 

 
Figure 4. The absolute error in the neural network basis material thickness estimates 
using varying numbers of hidden processing elements in (a) simulations, (b) 
collimated experiments, and (c) uncollimated experiments. The absolute errors 
reached their minimum when nH = 3 in simulations, nH = 5 in collimated experiments, 
and nH = 3 in uncollimated experiments. 
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III.B Estimator Performance 

Figure 5 presents the performance of the estimators in 

decomposing previously unseen combinations of the two basis 

materials, PMMA and aluminum. Figure 5 displays the 2D space 

spanned by the basis material thicknesses used in this study, with 

each point in this space representing a unique combination of basis 

material thicknesses. Figure 5 plots the true thicknesses of the basis 

material test points as well as the thicknesses estimated by the neural 

network and A-table estimators. In the case of simulations assuming 

an ideal detector, both estimators demonstrated similar performance 

and good agreement to the true values. For the experimental data, the 

estimated thicknesses had greater deviation from the true thicknesses 

at thicker combinations of basis material. Figure 5c demonstrates the 

error between the estimated and true thicknesses increased for the 

high-scatter case, with greater error for the A-table method. 

 
Figure 5. Estimated PMMA and aluminum thicknesses for test combinations of PMMA 
and aluminum for (a) simulations, (b) experiments with beam collimation, and (c) 
experiments without beam collimation. The depicted test data points were not used to 
calibrate the estimators. 

Figure 6 plots the performance of the estimators for 

decomposing thicknesses of Teflon, Delrin, and neoprene into 

equivalent PMMA and aluminum thicknesses. This experiment 

investigated how well the calibrated estimators generalized to new 

materials. The percent bias and standard deviation of the Delrin, 

Teflon, and neoprene material decomposition estimates are plotted in 

Figure 7 for both simulations and experiments. The bias and standard 

deviation were calculated for the metric of the estimated linear 

attenuation coefficient at 70 keV, as described in Section II.D. Both 
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estimators demonstrated similar performance for the simulated data, 

with less than 3% bias and 2% standard deviation. The experimental 

results demonstrated larger error than the simulation results, likely 

due to numerous effects such as the non-ideal spectral response, 

system instability, and errors in the assumed true material 

composition and densities. In the 2mm collimated experimental data 

(low scatter), the neural network method demonstrated lower 

standard deviation (0.1% – 0.35%) compared to the A-table method 

(0.3% to 2.4%) In the uncollimated experimental data (high scatter), 

the neural network method demonstrated lower standard deviation 

(0.1% – 0.5%) compared to the A-table method (0.3% to 2.6%). 

 
Figure 6. Estimated thicknesses of PMMA and aluminum basis materials for test 
thicknesses of Teflon, Delrin, and neoprene in (a) simulations (n = 100), (b) 

experiments with beam collimation (n = 5), and (c) experiments without beam 

collimation (n = 5). This data was not used for calibration of the estimator methods. 

 

 
Figure 7. Percent bias and standard deviation of the estimated 70 keV linear 

attenuation coefficient calculated from basis material thickness estimates in (a) 
simulations, (b) experiments with beam collimation, and (c) experiments without 
beam collimation. 

As described in Section II.F, additional experiments were 

performed to understand the potential sources of error in the 
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experimental material decomposition estimates. Figure 8 plots the 

basis material thicknesses corresponding to various thicknesses of 

Teflon that were estimated from the experimental data using 

maximum likelihood estimation assuming an ideal detector. As seen in 

Figure 8, assuming an ideal detector caused increased error in the 

material decomposition estimates with bias ranging from 11–28%, 

suggesting that the experimental data were affected by non-ideal 

detector effects. 

 
Figure 8. Thicknesses of PMMA and aluminum basis materials estimated from the 

experimental Teflon data using a maximum likelihood algorithm that assumed an ideal 
detector. 

Figure 9 plots the estimated basis material thicknesses of 

Teflon, Delrin, and neoprene for data acquired approximately 1 hour 

after calibration. The effects of system instability are evident when 

comparing the data acquired immediately after calibration (Figure 6b) 

with the data acquired after one hour (Figure 9). 
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Figure 9. Estimated thicknesses of PMMA and aluminum basis materials for test 
thicknesses of Teflon, Delrin, and neoprene in experiments (n = 5), acquired 
approximately one hour after acquiring the projections in Figure 6. 

III.C Rod phantom CT images 

Figure 10 displays the PMMA and aluminum basis images 

reconstructed from the basis sinograms estimated using the neural 

network and A-table methods. Figure 11 displays the 70 keV 

equivalent image that was calculated as a weighted sum of the basis 

material images. Table 1 displays the percent bias and standard 

deviation measured in ROIs in the 70-keV image. The bias in the 

neural network reconstruction ranged from 0.3% to 7.6%, compared 

to bias of 1.3% to 16% for the A-table method. The neural network 

resulted in 2.5% noise standard deviation compared to 1.7% for the 

A-table method. 
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Figure 10. PMMA and Aluminum basis material CT images reconstructed from basis 
sinograms decomposed using the A-table method (left) and the neural network 
method (right). 

 

 
Figure 11. The 70-keV equivalent CT image calculated as a weighted sum of the 
PMMA and aluminum basis images estimated with the A-table (left) and neural 
network (right). 
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Table 1. The percent bias and standard deviation of linear attenuation 

coefficient estimates of Teflon, LDPE, and PMMA regions in the 70-keV-

equivalent CT image. 

Neural Net A-table 

 

Bias (%) Std. Dev (%) Bias (%) Std. Dev (%) 

Teflon 0.335 2.478 1.342 1.380 

LDPE 7.603 2.044 16.43 1.656 

PMMA 4.980 2.234 9.909 1.532 

IV Discussion 

This work compared the performance of two empirical material 

decomposition methods, neural network and the A-table method, 

through simulations and experiments. In simulations which assumed 

an ideal detector, both methods demonstrated similar performance, 

with bias less than 3% and standard deviation below 2% for all cases. 

The bias and standard deviation was higher for the experimental 

measurements than simulations (bias 0.1%–11%, standard deviation 

<3%), which was expected due to non-ideal detector effects such as 

charge sharing, k-escape, and pulse pileup. In the experimental 

results, the neural network method demonstrated lower standard 

deviation (0.1%–0.5%) compared to the A-table method (0.3%–

2.6%) and lower bias for some material test cases (Figure 7). For the 

CT experiments, the neural networks demonstrated reduced bias 

compared to the A-table method (0.3% – 7.6% compared to 1.3% – 

16%, but increased noise (2.5% compared to 1.7%). While the results 

suggest potential benefits of the neural network method, additional 

studies with different detector configurations and detectors with 

improved temporal stability (Figure 9) are required to fully compare 

the two methods. 

Figures 5 and 6 demonstrated increased material decomposition 

error under conditions of increased scatter. The bias and standard 

deviation of the estimated attenuation coefficient at 70 keV was 

generally unaffected by the increased scatter (Figure 7). This result 

may be due to the limitations of evaluating the material decomposition 

estimates at one energy. Overall, the results demonstrate that scatter 

can reduce material decomposition accuracy of the empirical methods. 
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Future work is required to investigate potential scatter compensation 

techniques in conjunction with empirical decomposition. 

When the experimental data of the Teflon bars was decomposed 

assuming an ideal detector, the bias ranged from 11–28%, 

demonstrating the potential error due to non-ideal effects. The 

empirical neural network and A-table methods reduced this error to 

<11%. The remaining error may be due to errors in the assumed 

composition and density of the test materials and limitations in how 

well the empirical methods account for non-ideal effects. The accuracy 

of the empirical methods could potentially be improved by using 

calibration materials with higher purity. Error in the estimates may 

also be due to system instability between the time the calibration 

projections and the test projections were acquired. 

Alternative decomposition methods are currently under 

development that use statistical estimators, such as maximum 

likelihood, while modeling the incident spectrum, energy-bin 

thresholds, and flux-independent and flux-dependent spectral 

responses6,7 The issues of detector instability demonstrated in this 

work may also be an issue for these methods. Future studies are 

required to compare the empirical estimators investigated in this work 

to the alternative approach of explicit modeling of non-ideal effects. 

This work compared material decomposition methods for 

spectral CT with a photon-counting detector. Both methods could 

potentially be applied to dual-kV methods using a similar calibration 

procedure. This work focused on two-material decomposition. 

Decomposing into more than two materials is possible when imaging 

K-edge materials such iodine and gadolinium, where the additional 

basis materials represent attenuation of the K-edge materials.1 The 

neural network method can be expanded to accommodate additional 

basis materials by adding an output processing element for each 

additional material. The number of input processing elements depends 

on the number of acquired energy-bin measurements. The optimal 

number of hidden processing elements would be calculated as 

presented in Section II.C and may increase with the number of basis 

materials. The required calibration data would increase to an N-

dimensional grid consisting of combinations of the N basis materials 

(e.g., PMMA, aluminum, concentrations of iodine and/or gadolinium). 
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The A-table method could also be expanded to more than two 

materials by storing an N-dimensional look-up table for each detector 

element. 

V Conclusion 

Material decomposition was performed using an artificial neural 

network method and a linearized maximum likelihood estimator 

method (A-table method) through simulations and experiments using 

a photon-counting x-ray detector. The neural network method 

estimated basis material thicknesses with standard deviation less than 

0.5%, compared to standard deviations less than 2.5% for the A-table 

method. In the experimental study, non-ideal detector effects 

demonstrated a potential bias of 7–25%, which was reduced to 0.1–

11% using the proposed empirical methods. Overall, the results 

demonstrated preliminary experimental feasibility of empirical material 

decomposition for photon-counting detectors. 
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