2,911 research outputs found

    Structure and electronic transport in graphene wrinkles

    Full text link
    Wrinkling is a ubiquitous phenomenon in two-dimensional membranes. In particular, in the large-scale growth of graphene on metallic substrates, high densities of wrinkles are commonly observed. Despite their prevalence and potential impact on large-scale graphene electronics, relatively little is known about their structural morphology and electronic properties. Surveying the graphene landscape using atomic force microscopy, we found that wrinkles reach a certain maximum height before folding over. Calculations of the energetics explain the morphological transition, and indicate that the tall ripples are collapsed into narrow standing wrinkles by van der Waals forces, analogous to large-diameter nanotubes. Quantum transport calculations show that conductance through these collapsed wrinkle structures is limited mainly by a density-of-states bottleneck and by interlayer tunneling across the collapsed bilayer region. Also through systematic measurements across large numbers of devices with wide folded wrinkles, we find a distinct anisotropy in their electrical resistivity, consistent with our transport simulations. These results highlight the coupling between morphology and electronic properties, which has important practical implications for large-scale high-speed graphene electronics.Comment: 5 figures supplemental information in separated fil

    High operating temperature in V-based superconducting quantum interference proximity transistors

    Full text link
    Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux-to-voltage (up to 0.52 mV/Φ0\ \textrm{mV}/\Phi_0) and flux-to-current (above 12 nA/Φ0\ \textrm{nA}/\Phi_0) transfer functions, with the best estimated flux sensitivity \sim2.6 μΦ0/Hz\ \mu\Phi_0/\sqrt{\textrm{Hz}} reached under fixed voltage bias, where Φ0\Phi_0 is the flux quantum. The interferometers operate up to TbathT_\textrm{bath}\simeq 2 K \textrm{K}, with an improvement of 70%\% of the maximal operating temperature with respect to early SQUIPTs design. The main features of the V-based SQUIPT are described within a simplified theoretical model. Our results open the way to the realization of SQUIPTs that take advantage of the use of higher-gap superconductors for ultra-sensitive nanoscale applications that operate at temperatures well above 1 K.Comment: Published version with Supplementary Informatio

    Advanced III-V / Si nano-scale transistors and contacts: Modeling and analysis

    Get PDF
    The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and strained-Si in planar FETs and triple-gate non-planar FinFETs. (2) to demonstrate whether or not these technologies are viable alternatives to Si and conventional planar FETs. The simulation results indicate that III-V FETs do not outperform Si FETs in the ballistic transport regime, and triple-gate FinFETs surely represent the best architecture for sub-15nm gate contacts, independently from the choice of channel material. ^ This work also proves that the contact resistance becomes a limiting factor of device performance as it takes larger fraction of the total on-state resistance. Hence, contact resistance must be reduced to meet the next ITRS requirements. However, from a modeling point of view, the understanding of the contacts still remains limited due to its size and multiple associated scattering effects, while the intrinsic device performance can be projected. Therefore, a precise theoretical modeling is required to advance optimized contact design to improve overall device performance. In this work, various factors of the contact resistances are investigated within realistic contact-to-channel structure of III-V quantum well field-effect transistors (QWFET). The key finding is that the contact-to-channel resistance is mainly caused by structural reasons: 1) barriers between multiple layers in the contact region 2) Schottky barrier between metal and contact pad. These two barriers work as bottleneck of the system conductance. The extracted contact resistance matches with the experimental value. The approximation of contact resistance from quantum transport simulation can be very useful to guide better contact designs of the future technology nodes. ^ The theoretical modeling of these nano-scale devices demands a proper treatment of quantum effects such as the energy-level quantization caused by strong quantum confinement of electrons and band structure non-parabolicity. 2-D and 3-D quantum transport simulator that solves non-equilibrium Green\u27s functions (NEGF) transport and Poisson equations self-consistently within a real-space effective mass approximation. The sp3d5s* empirical tight-binding method is employed to include non-parabolicity to obtain more accurate effective masses in confined nano-structures. The accomplishment of this work would aid in designing, engineering and manufacturing nano-scale devices, as well as next-generation microchips and other electronics with nano-scale features

    Modeling Of Two Dimensional Graphene And Non-graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design

    Get PDF
    The Moore’s law of scaling of metal oxide semiconductor field effect transistor (MOSFET) had been a driving force toward the unprecedented advancement in development of integrated circuit over the last five decades. As the technology scales down to 7 nm node and below following the Moore’s law, conventional MOSFETs are becoming more vulnerable to extremely high off-state leakage current exhibiting a tremendous amount of standby power dissipation. Moreover, the fundamental physical limit of MOSFET of 60 mV/decade subthreshold slope exacerbates the situation further requiring current transport mechanism other than drift and diffusion for the operation of transistors. One way to limit such unrestrained amount of power dissipation is to explore novel materials with superior thermal and electrical properties compared to traditional bulk materials. On the other hand, energy efficient steep subthreshold slope devices are the other possible alternatives to conventional MOSFET based on emerging novel materials. This dissertation addresses the potential of both advanced materials and devices for development of next generation energy efficient integrated circuits. Among the different steep subthreshold slope devices, tunnel field effect transistor (TFET) has been considered as a promising candidate after MOSFET. A superior gate control on source-channel band-to-band tunneling providing subthreshold slopes well below than 60 mV/decade. With the emergence of atomically thin two-dimensional (2D) materials, interest in the design of TFET based on such novel 2D materials has also grown significantly. Graphene being the first and the most studied among 2D materials with exotic electronic and thermal properties. This dissertation primarily considers current transport modeling of graphene based tunnel devices from transport phenomena to energy efficient integrated circuit design. Three current transport models: semi-classical, semi-quantum and numerical simulations are described for the modeling of graphene nanoribbon tunnel field effect transistor (GNR TFET) where the semi-classical model is in close agreement with the quantum transport simulation. Moreover, the models produced are also extended for integrated circuit design using Verilog-A hardware description language for logic design. In order to overcome the challenges associated with the band gap engineering for making graphene transistor for logic operation, the promise of graphene based interlayer tunneling transistors are discussed along with their existing fundamental physical limitation of subthreshold slope. It has been found that such interlayer tunnel transistor has very poor electrostatic gate control on drain current. It gives subthreshold slope greater than the thermionic limit of 60 mV/decade at room temperature. In order to resolve such limitation of interlayer tunneling transistors, a new type of transistor named “junctionless tunnel effect transistor (JTET)” has been invented and modeled for the first time considering graphene-boron nitride (BN)-graphene and molybdenum disulfide (MoS2)-boron nitride (BN) heterostructures, where the interlayer tunneling mechanism controls the source-drain ballistic transport instead of depleting carriers in the channel. Steep subthreshold slope, low power and high frequency THz operation are few of the promising features studied for such graphene and MoS2 JTETs. From current transport modeling to energy efficient integrated circuit design using Verilog-A has been carried out for these new devices as well. Thus, findings in this dissertation would suggest the exciting opportunity of a new class of next generation energy efficient material based transistors as switches
    corecore