1,692 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Towards Self-Control of Service Rate for Battery Management in Energy Harvesting Devices

    Get PDF
    We consider the operation of an energy harvesting wireless device (sensor node) powered by a rechargeable battery, taking non-idealities into account. In particular, we consider sudden decrease and increase of the battery level (leakage and charge recovery consequently) due to the inner diffusion processes in the battery. These processes are affecting the stability of the device operation. In particular, leakage accelerates the depletion of the battery, which results in inactive periods of the device and, thus, potential data loss. In this paper, we propose a simplified self-control management of a battery expressed by restrictions, which could be used for an efficient operational strategy of the device. To achieve this, we rely on the double-queue model which includes the imperfections of the battery operation and bi-dimensional battery value. This includes both apparent, i.e., available at the electrodes and true energy levels of a battery. These levels can be significantly different because of deep discharge events and can equalize thanks to charge recovery effect. We performed some simulation and observed that we can diminish the models variable number to predict possible unwanted events such as apparent discharge events (when the areas near electrodes are depleted while other areas of the battery still contain some energy) and data losses. This observation helps to achieve sufficiently effective self-control management by knowing and managing just few parameters, and therefore offers valuable directions for the development of autonomic and self-sustainable operation

    Coping with spectrum and energy scarcity in Wireless Networks: a Stochastic Optimization approach to Cognitive Radio and Energy Harvesting

    Get PDF
    In the last decades, we have witnessed an explosion of wireless communications and networking, spurring a great interest in the research community. The design of wireless networks is challenged by the scarcity of resources, especially spectrum and energy. In this thesis, we explore the potential offered by two novel technologies to cope with spectrum and energy scarcity: Cognitive Radio (CR) and Energy Harvesting (EH). CR is a novel paradigm for improving the spectral efficiency in wireless networks, by enabling the coexistence of an incumbent legacy system and an opportunistic system with CR capability. We investigate a technique where the CR system exploits the temporal redundancy introduced by the Hybrid Automatic Retransmission reQuest (HARQ) protocol implemented by the legacy system to perform interference cancellation, thus enhancing its own throughput. Recently, EH has been proposed to cope with energy scarcity in Wireless Sensor Networks (WSNs). Devices with EH capability harvest energy from the environment, e.g., solar, wind, heat or piezo-electric, to power their circuitry and to perform data sensing, processing and communication tasks. Due to the random energy supply, how to best manage the available energy is an open research issue. In the second part of this thesis, we design control policies for EH devices, and investigate the impact of factors such as the finite battery storage, time-correlation in the EH process and battery degradation phenomena on the performance of such systems. We cast both paradigms in a stochastic optimization framework, and investigate techniques to cope with spectrum and energy scarcity by opportunistically leveraging interference and ambient energy, respectively, whose benefits are demonstrated both by theoretical analysis and numerically. As an additional topic, we investigate the issue of channel estimation in UltraWide-Band (UWB) systems. Due to the large transmission bandwidth, the channel has been typically modeled as sparse. However, some propagation phenomena, e.g., scattering from rough surfaces and frequency distortion, are better modeled by a diffuse channel. We propose a novel Hybrid Sparse/Diffuse (HSD) channel model which captures both components, and design channel estimators based on it

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Optimal Sensing and Transmission in Energy Harvesting Sensor Networks

    Get PDF
    Sensor networks equipped with energy harvesting (EH) devices have attracted great attentions recently. Compared with conventional sensor networks powered by batteries, the energy harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor networks possible. However, the random, scarce and non-uniform energy supply features also necessitate a completely different approach to energy management. A typical EH wireless sensor node consists of an EH module that converts ambient energy to electrical energy, which is stored in a rechargeable battery, and will be used to power the sensing and transmission operations of the sensor. Therefore, both sensing and transmission are subject to the stochastic energy constraint imposed by the EH process. In this dissertation, we investigate optimal sensing and transmission policies for EH sensor networks under such constraints. For EH sensing, our objective is to understand how the temporal and spatial variabilities of the EH processes would affect the sensing performance of the network, and how sensor nodes should coordinate their data collection procedures with each other to cope with the random and non-uniform energy supply and provide reliable sensing performance with analytically provable guarantees. Specifically, we investigate optimal sensing policies for a single sensor node with infinite and finite battery sizes in Chapter 2, status updating/transmission strategy of an EH Source in Chapter 3, and a collaborative sensing policy for a multi-node EH sensor network in Chapter 4. For EH communication, our objective is to evaluate the impacts of stochastic variability of the EH process and practical battery usage constraint on the EH systems, and develop optimal transmission policies by taking such impacts into consideration. Specifically, we consider throughput optimization in an EH system under battery usage constraint in Chapter 5

    DTER: Schedule Optimal RF Energy Request and Harvest for Internet of Things

    Full text link
    We propose a new energy harvesting strategy that uses a dedicated energy source (ES) to optimally replenish energy for radio frequency (RF) energy harvesting powered Internet of Things. Specifically, we develop a two-step dual tunnel energy requesting (DTER) strategy that minimizes the energy consumption on both the energy harvesting device and the ES. Besides the causality and capacity constraints that are investigated in the existing approaches, DTER also takes into account the overhead issue and the nonlinear charge characteristics of an energy storage component to make the proposed strategy practical. Both offline and online scenarios are considered in the second step of DTER. To solve the nonlinear optimization problem of the offline scenario, we convert the design of offline optimal energy requesting problem into a classic shortest path problem and thus a global optimal solution can be obtained through dynamic programming (DP) algorithms. The online suboptimal transmission strategy is developed as well. Simulation study verifies that the online strategy can achieve almost the same energy efficiency as the global optimal solution in the long term
    corecore