thesis

Coping with spectrum and energy scarcity in Wireless Networks: a Stochastic Optimization approach to Cognitive Radio and Energy Harvesting

Abstract

In the last decades, we have witnessed an explosion of wireless communications and networking, spurring a great interest in the research community. The design of wireless networks is challenged by the scarcity of resources, especially spectrum and energy. In this thesis, we explore the potential offered by two novel technologies to cope with spectrum and energy scarcity: Cognitive Radio (CR) and Energy Harvesting (EH). CR is a novel paradigm for improving the spectral efficiency in wireless networks, by enabling the coexistence of an incumbent legacy system and an opportunistic system with CR capability. We investigate a technique where the CR system exploits the temporal redundancy introduced by the Hybrid Automatic Retransmission reQuest (HARQ) protocol implemented by the legacy system to perform interference cancellation, thus enhancing its own throughput. Recently, EH has been proposed to cope with energy scarcity in Wireless Sensor Networks (WSNs). Devices with EH capability harvest energy from the environment, e.g., solar, wind, heat or piezo-electric, to power their circuitry and to perform data sensing, processing and communication tasks. Due to the random energy supply, how to best manage the available energy is an open research issue. In the second part of this thesis, we design control policies for EH devices, and investigate the impact of factors such as the finite battery storage, time-correlation in the EH process and battery degradation phenomena on the performance of such systems. We cast both paradigms in a stochastic optimization framework, and investigate techniques to cope with spectrum and energy scarcity by opportunistically leveraging interference and ambient energy, respectively, whose benefits are demonstrated both by theoretical analysis and numerically. As an additional topic, we investigate the issue of channel estimation in UltraWide-Band (UWB) systems. Due to the large transmission bandwidth, the channel has been typically modeled as sparse. However, some propagation phenomena, e.g., scattering from rough surfaces and frequency distortion, are better modeled by a diffuse channel. We propose a novel Hybrid Sparse/Diffuse (HSD) channel model which captures both components, and design channel estimators based on it

    Similar works