48,652 research outputs found

    Localization and Rendering of Sound Sources in Acoustic Fields

    Get PDF
    Disertační práce se zabývá lokalizací zdrojů zvuku a akustickým zoomem. Hlavním cílem této práce je navrhnout systém s akustickým zoomem, který přiblíží zvuk jednoho mluvčího mezi skupinou mluvčích, a to i když mluví současně. Tento systém je kompatibilní s technikou prostorového zvuku. Hlavní přínosy disertační práce jsou následující: 1. Návrh metody pro odhad více směrů přicházejícího zvuku. 2. Návrh metody pro akustické zoomování pomocí DirAC. 3. Návrh kombinovaného systému pomocí předchozích kroků, který může být použit v telekonferencích.This doctoral thesis deals with sound source localization and acoustic zooming. The primary goal of this dissertation is to design an acoustic zooming system, which can zoom the sound of one speaker among multiple speakers even when they speak simultaneously. The system is compatible with surround sound techniques. In particular, the main contributions of the doctoral thesis are as follows: 1. Design of a method for multiple sound directions estimations. 2. Proposing a method for acoustic zooming using DirAC. 3. Design a combined system using the previous mentioned steps, which can be used in teleconferencing.

    A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

    Get PDF
    This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms

    Automatic eduction and statistical analysis of coherent structures in the wall region of a confine plane

    Get PDF
    This paper describes a vortex detection algorithm used to expose and statistically characterize the coherent flow patterns observable in the velocity vector fields measured by Particle Image Velocimetry (PIV) in the impingement region of air curtains. The philosophy and the architecture of this algorithm are presented. Its strengths and weaknesses are discussed. The results of a parametrical analysis performed to assess the variability of the response of our algorithm to the 3 user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet Reynolds number, based on the initial mean flow velocity U0 and the jet width e, is 14000. The results of a statistical analysis of the size, shape, spatial distribution and energetic content of the coherent eddy structures detected in the impingement region of this test flow are provided. Although many questions remain open, new insights into the way these structures might form, organize and evolve are given. Relevant results provide an original picture of the plane turbulent impinging jet

    The color of sea level: importance of spatial variations in spectral shape for assessing the significance of trends

    Get PDF
    We investigate spatial variations in the shape of the spectrum of sea level variability, based on a homogeneously-sampled 12-year gridded altimeter dataset. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist, and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a 5th order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times what would be calculated assuming “white” noise, and the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global-mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes, over this perio

    Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis

    Full text link
    The frequency-domain fast boundary element method (BEM) combined with the exponential window technique leads to an efficient yet simple method for elastodynamic analysis. In this paper, the efficiency of this method is further enhanced by three strategies. Firstly, we propose to use exponential window with large damping parameter to improve the conditioning of the BEM matrices. Secondly, the frequency domain windowing technique is introduced to alleviate the severe Gibbs oscillations in time-domain responses caused by large damping parameters. Thirdly, a solution extrapolation scheme is applied to obtain better initial guesses for solving the sequential linear systems in the frequency domain. Numerical results of three typical examples with the problem size up to 0.7 million unknowns clearly show that the first and third strategies can significantly reduce the computational time. The second strategy can effectively eliminate the Gibbs oscillations and result in accurate time-domain responses
    • …
    corecore