4 research outputs found

    Framework for Contextual Outlier Identification using Multivariate Analysis approach and Unsupervised Learning

    Get PDF
    Majority of the existing commercial application for video surveillance system only captures the event frames where the accuracy level of captures is too poor. We reviewed the existing system to find that at present there is no such research technique that offers contextual-based scene identification of outliers. Therefore, we presented a framework that uses unsupervised learning approach to perform precise identification of outliers for a given video frames concerning the contextual information of the scene. The proposed system uses matrix decomposition method using multivariate analysis to maintain an equilibrium better faster response time and higher accuracy of the abnormal event/object detection as an outlier. Using an analytical methodology, the proposed system blocking operation followed by sparsity to perform detection. The study outcome shows that proposed system offers an increasing level of accuracy in contrast to the existing system with faster response time

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    Impact of Video Content on Video Quality for Video over Wireless Networks

    No full text
    Abstract—Video streaming is a promising multimedia application and is gaining popularity over wireless/mobile communications. The quality of the video depends heavily on the type of content. The aim of the paper is threefold. First, video sequences are classified into groups representing different content types using cluster analysis based on the spatial (edges) and temporal (movement) feature extraction. Second, we conducted experiments to investigate the impact of packet loss on video contents and hence find the threshold in terms of upper, medium and lower quality boundary at which users ’ perception of service quality is acceptable. Finally, to identify the minimum send bitrate to meet Quality of Serive (QoS) requirements (e.g. to reach communication quality with Mean Opinion Score (MOS) greater than 3.5) for the different content types over wireless networks. We tested 12 different video clips reflecting different content types. We chose Peak-Signal-to-Noise-Ratio (PSNR) and decodable frame rate (Q) as end-to-end video quality metrics and MPEG4 as the video codec. The work should help optimizing bandwidth allocation for specific content in content delivery networks. Keywords-MPEG4; 802.11b; NS-2; PER; Video quality evaluatio
    corecore