6 research outputs found

    Systematic Analysis: Resistance to Traffic Analysis Attacks in Tor System for Critical Infrastructures

    Get PDF
    The threat of traffic analysis attacks against the Tor System is an acknowledged and open research issue, especially in critical infrastructures, motivating the need for continuous research into the potential attacks and countermeasures against this threat. This paper aims to provide an in-depth study into the driving technical mechanisms of the current state-of-art Tor System (Browser Bundle and Network) that aim to provide its benefits to anonymity and privacy online. This work presents the countermeasures that have been proposed and/or implemented against such attacks, in a collated evaluation to determine their effectiveness, suitability to Tor Project, and its design aims/goals

    Impact of Network Topology on Anonymity and Overhead in Low-Latency Anonymity Networks

    No full text
    Abstract. Low-latency anonymous communication networks require padding to resist timing analysis attacks, and dependent link padding has been proven to prevent these attacks with minimal overhead. In this paper we consider low-latency anonymity networks that implement dependent link padding, and examine various network topologies. We find that the choice of the topology has an important influence on the padding overhead and the level of anonymity provided, and that Stratified networks offer the best trade-off between them. We show that fully connected network topologies (Free Routes) are impractical when dependent link padding is used, as they suffer from feedback effects that induce disproportionate amounts of padding; and that Cascade topologies have the lowest padding overhead at the cost of poor scalability with respect to anonymity. Furthermore, we propose an variant of dependent link padding that considerably reduces the overhead at no loss in anonymity with respect to external adversaries. Finally, we discuss how Tor, a deployed large-scale anonymity network, would need to be adapted to support dependent link padding.

    Impact of Network Topology on Anonymity and Overhead in Low-Latency Anonymity Networks

    No full text
    Low-latency anonymous communication networks require padding to resist timing analysis attacks, and dependent link padding has been proven to prevent these attacks with minimal overhead. In this paper we consider low-latency anonymity networks that implement dependent link padding, and examine various network topologies. We find that the choice of the topology has an important influence on the padding overhead and the level of anonymity provided, and that Stratified networks offer the best trade-off between them. We show that fully connected network topologies (Free Routes) are impractical when dependent link padding is used, as they suffer from feedback effects that induce disproportionate amounts of padding; and that Cascade topologies have the lowest padding overhead at the cost of poor scalability with respect to anonymity. Furthermore, we propose an variant of dependent link padding that considerably reduces the overhead at no loss in anonymity with respect to external adversaries. Finally, we discuss how Tor, a deployed large-scale anonymity network, would need to be adapted to support dependent link padding. © 2010 Springer-Verlag Berlin Heidelberg.status: publishe

    Improvement of DDoS attack detection and web access anonymity

    Full text link
    The thesis has covered a range of algorithms that help to improve the security of web services. The research focused on the problems of DDoS attack and traffic analysis attack against service availability and information privacy respectively. Finally, this research significantly advantaged DDoS attack detection and web access anonymity.<br /

    When Whereabouts is No Longer Thereabouts:Location Privacy in Wireless Networks

    Get PDF
    Modern mobile devices are fast, programmable and feature localization and wireless capabilities. These technological advances notably facilitate mobile access to Internet, development of mobile applications and sharing of personal information, such as location information. Cell phone users can for example share their whereabouts with friends on online social networks. Following this trend, the field of ubiquitous computing foresees communication networks composed of increasingly inter-connected wireless devices offering new ways to collect and share information in the future. It also becomes harder to control the spread of personal information. Privacy is a critical challenge of ubiquitous computing as sharing personal information exposes users' private lives. Traditional techniques to protect privacy in wired networks may be inadequate in mobile networks because users are mobile, have short-lived encounters and their communications can be easily eavesdropped upon. These characteristics introduce new privacy threats related to location information: a malicious entity can track users' whereabouts and learn aspects of users' private lives that may not be apparent at first. In this dissertation, we focus on three important aspects of location privacy: location privacy threats, location-privacy preserving mechanisms, and privacy-preservation in pervasive social networks. Considering the recent surge of mobile applications, we begin by investigating location privacy threats of location-based services. We push further the understanding of the privacy risk by identifying the type and quantity of location information that statistically reveals users' identities and points of interest to third parties. Our results indicate that users are at risk even if they access location-based services episodically. This highlights the need to design privacy into location-based services. In the second part of this thesis, we delve into the subject of privacy-preserving mechanisms for mobile ad hoc networks. First, we evaluate a privacy architecture that relies on the concept of mix zones to engineer anonymity sets. Second, we identify the need for protocols to coordinate the establishment of mix zones and design centralized and distributed approaches. Because individuals may have different privacy requirements, we craft a game-theoretic model of location privacy to analyze distributed protocols. This model predicts strategic behavior of rational devices that protects their privacy at a minimum cost. This prediction leads to the design of efficient privacy-preserving protocols. Finally, we develop a dynamic model of interactions between mobile devices in order to analytically evaluate the level of privacy provided by mix zones. Our results indicate the feasibility and limitations of privacy protection based on mix zones. In the third part, we extend the communication model of mobile ad hoc networks to explore social aspects: users form groups called "communities" based on interests, proximity, or social relations and rely on these communities to communicate and discover their context. We analyze using challenge-response methodology the privacy implications of this new communication primitive. Our results indicate that, although repeated interactions between members of the same community leak community memberships, it is possible to design efficient schemes to preserve privacy in this setting. This work is part of the recent trend of designing privacy protocols to protect individuals. In this context, the author hopes that the results obtained, with both their limitations and their promises, will inspire future work on the preservation of privacy
    corecore