3,625 research outputs found

    Anderson localization in generalized discrete time quantum walks

    Get PDF
    We study Anderson localization in a generalized discrete time quantum walk - a unitary map related to a Floquet driven quantum lattice. It is controlled by a quantum coin matrix which depends on four angles with the meaning of potential and kinetic energy, and external and internal synthetic flux. Such quantum coins can be engineered with microwave pulses in qubit chains. The ordered case yields a two-band eigenvalue structure on the unit circle which becomes completely flat in the limit of vanishing kinetic energy. Disorder in the external magnetic field does not impact localization. Disorder in all the remaining angles yields Anderson localization. In particular, kinetic energy disorder leads to logarithmic divergence of the localization length at spectral symmetry points. Strong disorder in potential and internal magnetic field energies allows to obtain analytical expressions for spectrally independent localization length which is highly useful for various applications.Comment: 11 pages, 14 figure

    Graph Metrics for Temporal Networks

    Get PDF
    Temporal networks, i.e., networks in which the interactions among a set of elementary units change over time, can be modelled in terms of time-varying graphs, which are time-ordered sequences of graphs over a set of nodes. In such graphs, the concepts of node adjacency and reachability crucially depend on the exact temporal ordering of the links. Consequently, all the concepts and metrics proposed and used for the characterisation of static complex networks have to be redefined or appropriately extended to time-varying graphs, in order to take into account the effects of time ordering on causality. In this chapter we discuss how to represent temporal networks and we review the definitions of walks, paths, connectedness and connected components valid for graphs in which the links fluctuate over time. We then focus on temporal node-node distance, and we discuss how to characterise link persistence and the temporal small-world behaviour in this class of networks. Finally, we discuss the extension of classic centrality measures, including closeness, betweenness and spectral centrality, to the case of time-varying graphs, and we review the work on temporal motifs analysis and the definition of modularity for temporal graphs.Comment: 26 pages, 5 figures, Chapter in Temporal Networks (Petter Holme and Jari Saram\"aki editors). Springer. Berlin, Heidelberg 201

    Random Walks Estimate Land Value

    Full text link
    Expected urban population doubling calls for a compelling theory of the city. Random walks and diffusions defined on spatial city graphs spot hidden areas of geographical isolation in the urban landscape going downhill. First--passage time to a place correlates with assessed value of land in that. The method accounting the average number of random turns at junctions on the way to reach any particular place in the city from various starting points could be used to identify isolated neighborhoods in big cities with a complex web of roads, walkways and public transport systems
    • …
    corecore