8 research outputs found

    Adaptive CNN-based private LTE solution for fair coexistence with Wi-Fi in unlicensed spectrum

    Get PDF
    Recently, the expansion of wireless network deployments is resulting in increased scarcity of available licensed radio spectrum. As the domain of wireless communications is progressing rapidly, many industries are looking into wireless network solutions that can increase their productivity. Private LTE is a promising wireless network solution as it can be customised independently without the control of a mobile network operator while providing reliable and spectrum efficient services. For this reason, the deployment of Private LTE in the unlicensed spectrum and its coexistence with Wi-Fi is becoming a popular topic in research. In this paper, we propose a coexistence scheme for private LTE network in unlicensed spectrum that enables a fair spectrum sharing with co-located Wi-Fi networks. This is achieved by exploiting various LTE frame configurations consisting of different combinations of downlink, uplink, special subframe and muted subframes. The configuration of a single frame is decided based on a rule based algorithm that exploits Wi-Fi spectrum occupancy statistics that is obtained from a technology recognition system which is based on a Convolutional Neural Network. The performance of the proposed private LTE scheme and its coexistence with Wi-Fi is investigated for different traffic scenarios showcasing how the proposed scheme can lead to a harmless coexistence of LTE and Wi-Fi

    LTE IN UNLICENSED BANDS: A RIVAL OR COLLABORATOR TO WI-FI?

    Get PDF
    Due to the rapidly increasing demand for internet traffic, mobile operators have faced a problem of bandwidth availability. Since only licensed spectrum has been previously utilized by wireless networks, moving LTE to the 5 GHz unlicensed bands has become a popular research initiative, known as LTELicensed Assisted Access (LTE-LAA). This thesis studies the feasibility and implementation of LTE-LAA, and sets a goal of confirming the effectiveness of this technology. An alternative implementation of a Listen-Before-Talk channel contention mechanism is tested in this work with the use of LTE-A Vienna Link Level Simulator. The obtained results suggest that LTE-LAA is capable of boosting network throughput while providing harmonious coexistence with the IEEE 802.11 standard operating in the same unlicensed spectrum

    LTE-U and Wi-Fi hidden terminal problem: How serious is it for deployment consideration?

    Get PDF
    The deployment of LTE in unlicensed spectrum is a plausible solution to meet explosive traffic demand from mobile users. However, fair coexistence with the existing unlicensed technologies, mainly Wi-Fi, needs to be ensured before any such deployment. Duty cycled LTE (LTE-U) is a simple and an easily adaptable scheme which helps in fair coexistence with the Wi-Fi. Nonetheless, the immense deployment of Wi-Fi necessitates a user-oriented study to find the effects of LTE-U operation, primarily in scenarios where the LTE-U eNB remains hidden from Wi-Fi Access Point. To comprehend these effects, we perform a user-level throughput study of Wi-Fi in the presence of LTE-U using a testbed and observe a clear unfairness in throughput distribution among Wi-Fi users. Furthermore, we also notice inability among the disadvantaged users to receive the periodic Wi-Fi beacon frames successfully. The reasons and the subsequent consequences, of throughput unfairness and beacon losses, are carefully elaborated. Also, to validate the beacon loss results, we present a beacon loss analysis which provides a mathematical expression to find the beacon loss percentage. Finally, we examine the results and highlight a need for incorporating additional functionalities in either LTE-U or Wi-Fi to overcome the present challenges

    A Q-learning scheme for fair coexistence between LTE and Wi-Fi in unlicensed spectrum

    Get PDF
    During the last years, the growth of wireless traffic pushed the wireless community to search for solutions that can assist in a more efficient management of the spectrum. Toward this direction, the operation of long term evolution (LTE) in unlicensed spectrum (LTE-U) has been proposed. Targeting a global solution that respects the regional regulations worldwide, 3GPP has published the LTE licensed assisted access (LAA) standard. According to LTE LAA, a listen before talk (LBT) procedure must precede any LTE transmission burst in the unlicensed spectrum. However, the proposed standard may cause coexistence issues between LTE and Wi-Fi, especially in the case that the latter does not use frame aggregation. Toward the provision of a balanced channel access, we have proposed mLTE-U that is an adaptive LTE LBT scheme. According to mLTE-U, LTE uses a variable transmission opportunity (TXOP), followed by a variable muting period. This muting period can be exploited by co-located Wi-Fi networks to gain access to the medium. In this paper, the system model of the mLTE-U scheme in coexistence with Wi-Fi is studied. In addition, mLTE-U is enhanced with a Q-learning technique that is used for autonomous selection of the appropriate combinations of TXOP and muting period that can provide fair coexistence between co-located mLTE-U and Wi-Fi networks. Simulation results showcase the performance of the proposed model and reveal the benefit of using Q-learning for self-adaptation of mLTE-U to the changes of the dynamic wireless environment, toward fair coexistence with Wi-Fi. Finally, the Q-learning mechanism is compared with conventional selection schemes showing the superior performance of the proposed model over less complex mechanisms

    Cooperation techniques between LTE in unlicensed spectrum and Wi-Fi towards fair spectral efficiency

    Get PDF
    On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner

    An adaptive LTE listen-before-talk scheme towards a fair coexistence with Wi-Fi in unlicensed spectrum

    Get PDF
    The technological growth combined with the exponential increase of wireless traffic are pushing the wireless community to investigate solutions to maximally exploit the available spectrum. Among the proposed solutions, the operation of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has attracted significant attention. Recently, the 3rd Generation Partnership Project announced specifications that allow LTE to transmit in the unlicensed spectrum using a Listen Before Talk (LBT) procedure, respecting this way the regulator requirements worldwide. However, the proposed standards may cause coexistence issues between LTE and legacy Wi-Fi networks. In this article, it is discussed that a fair coexistence mechanism is needed to guarantee equal channel access opportunities for the co-located networks in a technology-agnostic way, taking into account potential traffic requirements. In order to enable harmonious coexistence and fair spectrum sharing among LTE-U and Wi-Fi, an adaptive LTE-U LBT scheme is presented. This scheme uses a variable LTE transmission opportunity (TXOP) followed by a variable muting period. This way, co-located Wi-Fi networks can exploit the muting period to gain access to the wireless medium. The scheme is studied and evaluated in different compelling scenarios using a simulation platform. The results show that by configuring the LTE-U with the appropriate TXOP and muting period values, the proposed scheme can significantly improve the coexistence among LTE-U and Wi-Fi in a fair manner. Finally, a preliminary algorithm is proposed on how the optimal configuration parameters can be selected towards harmonious and fair coexistence
    corecore