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ABSTRACT During the last years, the growth of wireless traffic pushed the wireless community to search for
solutions that can assist in a more efficient management of the spectrum. Toward this direction, the operation
of long term evolution (LTE) in unlicensed spectrum (LTE-U) has been proposed. Targeting a global solution
that respects the regional regulations worldwide, 3GPP has published the LTE licensed assisted access (LAA)
standard. According to LTE LAA, a listen before talk (LBT) procedure must precede any LTE transmission
burst in the unlicensed spectrum. However, the proposed standard may cause coexistence issues between
LTE and Wi-Fi, especially in the case that the latter does not use frame aggregation. Toward the provision of
a balanced channel access, we have proposed mLTE-U that is an adaptive LTE LBT scheme. According to
mLTE-U, LTE uses a variable transmission opportunity (TXOP), followed by a variable muting period. This
muting period can be exploited by co-located Wi-Fi networks to gain access to the medium. In this paper,
the system model of the mLTE-U scheme in coexistence with Wi-Fi is studied. In addition, mLTE-U is
enhanced with a Q-learning technique that is used for autonomous selection of the appropriate combinations
of TXOP and muting period that can provide fair coexistence between co-located mLTE-U and Wi-Fi
networks. Simulation results showcase the performance of the proposedmodel and reveal the benefit of using
Q-learning for self-adaptation of mLTE-U to the changes of the dynamic wireless environment, toward fair
coexistence withWi-Fi. Finally, the Q-learningmechanism is compared with conventional selection schemes
showing the superior performance of the proposed model over less complex mechanisms.

INDEX TERMS LTE, Wi-Fi, Q-learning, fairness, coexistence, LTE unlicensed, transmission opportunity,
muting period.

I. INTRODUCTION
Over the last years, the technological growth has led to a
tremendous increase of wireless devices such as smartphones,
laptops and sensor networks, that exchange information with
each other. Additionally, the establishment of Internet of
Things (IoT) has further increased the number of the wire-
lessly interconnected devices. The wireless traffic is expected
to increase by a factor of 1000 by 2020 compared to that
in 2010 [1]. This information is exchanged between devices
using different types of wireless technologies such as LTE,
IEEE 802.11 (also known as Wi-Fi), IEEE 802.15.4 and
Bluetooth. Recently, technologies that target wide range com-
munications such as LORA and SIGFOX exploit sub-GHz
bands. Furthermore, high frequency bands such as mmWave
are used for mutli-gigabit speeds (IEEE 802.11ad). It is clear
that soon the wireless network capacity will become a bottle-
neck for serving the increased wireless traffic.

Concurrently, the licensed spectrum used by the mobile
operators becomes very scarce. The availability of the
licensed spectrum combined with the high cost of a licensed
frequency band have pushed the mobile operators to inves-
tigate solutions that can assist in meeting the 1000x chal-
lenge requirements. Among other solutions like (massive)
Multiple-Input Multiple-Output (MIMO) and Carrier Aggre-
gation the LTE operation in the unlicensed spectrum (LTE-U)
has attracted significant attention from the wireless commu-
nity. Hence, several techniques have been proposed aiming
to achieve harmonious coexistence between LTE and other
well-established technologies in the unlicensed spectrum
(e.g. Wi-Fi) [2].

In regions where a Listen Before Talk (LBT) procedure
before a transmission is not mandatory, such as in U.S.A. or in
China, LTE can transmit in unlicensed spectrum using a duty-
cycle technique. The most famous technique of this nature is
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the Carrier Sense Adaptive Transmission (CSAT) [3], which
has been proposed by Qualcomm. CSAT exploits duty-cycle
periods in order to give transmission opportunities (TXOP)
to potential co-located Wi-Fi networks. According to CSAT,
the time domain is divided into ON and OFF periods. During
an OFF period, also known as mute period, LTE remains
silent, giving the opportunity to other networks to transmit.
During an ON period, LTE accesses the channel without
estimating it for potential ongoing transmissions. The dura-
tion of the LTE ON and OFF periods are defined by the
evolved NodeB (eNB) according to the observed channel
utilization, based on the estimated number of Wi-Fi Access
Points (AP) [3].

Towards a coexistence technique that respects the regional
regulations in regions where an LBT procedure before a
transmission in the unlicensed spectrum is mandatory (such
as in Europe and in Japan), 3GPP published the LTE
License Assisted Access (LTE LAA) standard as part of
the Release 13 [4]. The standard includes the description
of an LBT procedure that is also known as Clear Channel
Assessment (CCA) that must be performed prior to a trans-
mission in the unlicensed spectrum. Initially, LTE LAA is
designed to be used for downlink (DL) traffic only and to
operate within the 5-GHz unlicensed band. In a latter phase
and towards Release 14, it is expected to be used for both
DL and uplink (UL) traffic [5]. According to LTE LAA,
an eNB will be able to activate and deactivate a secondary
cell in unlicensed spectrum, next to the primary cell that
operates in the licensed band owned by the operator. Through
a secondary cell, an operator can offload the LTE network
by transmitting DL data traffic via the Physical DL Shared
Chanel (PDSCH), while the LTE control signals and the UL
traffic (according to Release 13) will be transmitted via the
licensed anchor. Furthermore, the LTE operation solely in the
unlicensed spectrum has been proposed by leading wireless
stakeholders, towards the decoupling of LTE from the opera-
tors. To this end, they formed the MulteFire Alliance [6].

Although the LTE LAA standard defines that a CCA
procedure must be performed before a transmission in the
unlicensed spectrum, it also defines four channel access pri-
ority classes. Each priority class specifies among others the
transmission duration in unlicensed channel after it has been
estimated as idle. This transmission duration varies from 2 up
to 10 ms. On the other hand, when frame aggregation is not
enabled or supported by the 802.11 standard, a typical Wi-Fi
transmission lasts for few hundreds of µs [7]. Even when
frame aggregation is used, a significant percentage of packets
requires a short transmission time. In [8], it has been evalu-
ated that 50% of the packets are transmitted within 30 µs,
while 80% of the packets are transmitted within 1 ms. This
shows that the ratio between LTE and Wi-Fi transmission
time occupancy is not balanced. This can lead to unfair coex-
istence between the two networks in the unlicensed spectrum.

In our previous work [9] and based on this observa-
tion, a novel coexistence mechanism named mLTE-U has
been proposed and builds on elements of LTE Release 13.

mLTE-U is an adaptive LTE-U transmission scheme, accord-
ing to which LTE can transmit DL traffic in the unlicensed
spectrum after the channel has been assessed as idle, using a
variable TXOP period followed by a variable muting period.
This muting period can give channel access opportunities to
other potentially co-located networks such as Wi-Fi. From
the different possible pairs of TXOPs and muting periods,
the selection of the appropriate combination has to be done
in a way that the co-located networks share the medium in a
fair way. The mLTE-U scheme has been evaluated using an
event-based simulation platform.

This article further extends this work by studying the
system model of the mLTE-U mechanism in coexistence
with Wi-Fi and by introducing reinforcement learning and
specifically Q-learning, as it is able to provide automatic
and autonomous selection of the appropriate TXOP and mut-
ing period combinations that can enable fair coexistence.
Q-learning is a technique that converges to optimal poli-
cies. Another advantage of Q-learning is that it does not
require a prior environment model [10]. This is suitable for
dynamic and arbitrary environments such aswireless environ-
ments. The main contribution of this work is summarized as
follows:
• Description and analysis of the system model for
the proposed mLTE-U scheme when it coexists with
Wi-Fi or other mLTE-U networks

• Discussion about fair coexistence in unlicensed spec-
trum, definition of fairness as equal sharing of spectrum
in a technology-agnostic way and problem formulation
of mLTE-U TXOP and muting period selection towards
fair spectrum sharing

• Use of Q-learning mechanism for optimal and
autonomous selection of mLTE-U TXOP and muting
period towards fair coexistence

• Performance evaluation of the proposed mLTE-U coex-
istence schemewith andwithout usingQ-learningmech-
anism through simulations

• Comparison of Q-learning with conventional selection
mechanisms such as random selection and round-robin

The remainder of the article is organized as follows.
Section II gives an overview of the current literature on the
coexistence of LTE-U and Wi-Fi and the exploitation of
Q-learning towards the selection and adjustment of coex-
istence parameters. In Section III, we discuss the problem
that arises when LTE LAA coexists with traditional Wi-Fi
networks that do not use frame aggregation and we give
a summarized description of the mLTE-U scheme. Next,
in Section IV, we analyze the system model of the mLTE-U
scheme, when it coexists with Wi-Fi. Section V discusses
the topic of fair coexistence in unlicensed spectrum and the
approach followed in this article. Section VI analyses the
integration and usage of a Q-learning mechanism in mLTE-U
towards autonomous and optimal selection of the mLTE-U
parameters. In Section VII, we describe the simulation envi-
ronment that has been used, while Section VIII evaluates
the performance of the proposed technique and compares
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it with conventional selection schemes. Finally, Section IX
concludes the paper and discusses plans for future work.

II. RELATED WORK
A. COEXISTENCE BETWEEN LTE-U AND Wi-Fi
From the moment LTE-U was firstly introduced, there were
serious concerns from the wireless community about unfair
coexistence of LTE with other well-established technologies
in the unlicensed spectrum, such as Wi-Fi. These concerns
were based on the fact that LTE is designed to be a scheduled
technology that does not use a CCA mechanism to sense
the medium before a transmission. Hence, it would transmit
arbitrarily forcing the other networks to continuously back-
off. In our previous work [11], we studied the impact of a
traditional LTE operating in unlicensed spectrum on Wi-Fi
using Off-The-Shelf (OTS) hardware equipment at the LTE
testbed of IMEC [12]. Three different levels of LTE signal
power have been examined that represent different possible
levels of LTE impact on Wi-Fi. According to the results,
the Wi-Fi performance can be significantly affected by LTE.
Several other studies [13] [14] [15] evaluate the impact of
LTE on Wi-Fi through experiments, mathematical models
and simulations, all coming to the same conclusion, namely
that coexistence mechanisms are required to render LTE fair
towards other co-located technologies, like Wi-Fi.

Lately, several coexistence mechanisms have been pro-
posed, targeting to improve the coexistence between LTE and
Wi-Fi. Similar to the CSAT mechanism that is described in
Section I, Almeida et al. [16] propose a coexistence scheme
that exploits periodically blank LTE subframes during an LTE
frame in order to give transmission opportunities to Wi-Fi.
The scheme is evaluated via simulations and it is concluded
that the number and the order of the blank subframes have an
impact on the provided coexistence.

In our previous work [17], the concept of LTE-U has been
extensively studied. To this end, a detailed analysis of the
current state-of-the-art regarding LTE-U and Wi-Fi is given.
Additionally, a classification of techniques that can be applied
between co-located LTE and Wi-Fi networks is presented.
This classification combined with the study of the literature
revealed the lack of cooperation schemes among co-located
networks that can lead to more optimal use of the available
spectrum. In order to fill this gap, we proposed several con-
cepts of cooperation techniques that can enhance the spectral
efficiency between coexisting LTE and Wi-Fi networks. The
proposed techniques are compared between each other in
terms of complexity and performance.

As it has been discussed in Section I, 3GPP announced the
LTE LAA as part of Release 13, towards a global coexistence
technique that respects the regional regulations worldwide.
The strong point of this technique is that it includes the
description of a CCA procedure that must be performed
before a transmission in the unlicensed spectrum to verify the
availability of the channel [4]. The concept of the adoption
of a CCA procedure by LTE has been proposed in several
works. Kim et al. [18] propose an LBT scheme for LTE LAA

that enhances the coexistence with Wi-Fi and increases the
overall system performance. The scheme comprises of two
parts named on-off adaptation for channel occupancy time
and short-long adaptation for idle time. According to the
first mechanism, the channel occupancy time of LTE can be
adapted based on the load of the network, while according to
the second one the idle period can be adapted based on the
Contention Window (CW) duration of Wi-Fi.

Bhorkar et al. [19], propose a MAC layer for LTE-U that
uses LBT and channel reservation packets. The LBT can be
either synchronous or asynchronous. Furthermore, in order
to cope with potential collisions, they propose improve-
ments to the LTE link adaptation algorithm. The simulation
results show that the performance of co-located Wi-Fi can be
improved by the proposedMAC design. The LTE-U cell edge
performance can be also improved by the channel reservation
mechanism.

Hao et al. [20] study the coexistence between LTE LAA
and Wi-Fi using LBT Category 4 (Cat 4) channel access
scheme. The behavior of the eNB is modeled as a Markov
chain. The authors adopt the obtained throughput as perfor-
mance indicator. The proposed LBT scheme uses an adaptive
CW size for LTE LAA. The results show that the proposed
scheme can achieve higher performance compared to the
fixed CW size scheme.

Mushunuri et al. [21] propose an LBT mechanism for LTE
LAA that aims to share the medium in a fair way and con-
currently to increase of the overall system performance. This
work analyses mathematically the proposed LBT scheme
and additionally, it is validated via simulations. The results
show that the performance of Wi-Fi can be increased by
proper selection of LAA channel occupancy and the backoff
counter.

A detailed survey of the coexistence between LTE and
Wi-Fi on 5 GHz with corresponding deployment scenarios
is given in [22]. The authors give a detailed description of
the coexistence-related features of LTE and Wi-Fi, the chal-
lenges, the differences in performance between the two dif-
ferent technologies and co-channel interference. They discuss
in detail the proposed coexistence techniques between LTE
and Wi-Fi that have been proposed in the literature.
Moreover, the survey analyses the concept of scenario-
oriented coexistence. According to this concept, coexistence-
related problems can be solved according to different
deployment scenarios.

B. COEXISTENCE ENHANCEMENT WITH Q-LEARNING
Q-learning has been used in various works to enhance the
coexistence mechanisms and render them capable to learn
individually the best possible strategies in order to achieve
a target Li et al. [23] propose a Q-learning-based dynamic
duty cycle selection mechanism for the configuration of LTE
transmission gaps. LTE LAA and Wi-Fi performance using
a fixed transmission gap is evaluated and is used as refer-
ence scenario. Then, the proposed Q-Learning mechanism
is compared with the reference scenario. Simulation results
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TABLE 1. Channel access priority class configuration of LTE LAA.

show that the proposed scheme enhances the overall capacity
performance.

Rupasinghe and Guvenc [24] propose a fair DL traffic
management scheme. This scheme targets to adapt the min-
imum CW values and assign feasible weights to the LAA
eNBs with different traffic loads. This way, they aim to
achieve fair spectrum sharing with coexistingWi-Fi networks
and service differentiation for DL LTE LAA traffic. Simula-
tion results show that the proposed scheme can offer fair coex-
istence with Wi-Fi networks and can provide proportional
fairness to LAA eNBs with different traffic requirements.

In [25], a docitive Q-learning scheme for joint resource
allocation and power control is proposed. In this scheme,
the femto base stations learn the optimal strategies by exploit-
ing Q-learning and share their knowledge with their neigh-
bors. The target of the learning scheme is the maximization of
the femtocell capacity, while maintaining the quality of ser-
vice requirement of the macro-users. The proposed scheme
is compared with the independent learning in terms of con-
vergence, min-max capacity and the impact on the femtocell
density.

A channel selection mechanism using Q-learning for
LTE-U is proposed in [26]. This mechanism decides the
most appropriate channel in unlicensed spectrum for a small
cell base station. Different indoor scenarios with small cells
belonging to two different operators have been studied.
The results show that the proposed approach is capable to
achieve a performance between 96% and 99% of the optimum
throughput.

In [27], a Q-learning mechanism for advanced learning
of the activity within an unlicensed band is proposed. This
mechanism results in enhanced coexistence between LTE
LAA and Wi-Fi. Furthermore, the coexistence is further
enhanced through a double Q-learning method. This method
takes into account both transmit power control of LTE and
discontinuous transmission. Simulation results show that the
proposed methods are capable to improve both LTE and
Wi-Fi performance.

C. ENHANCEMENT OF mLTE-U SCHEME
WITH Q-LEARNING
Although 3GPP published the LTE LAA standard that
describes a CCA procedure that must be performed before

a DL transmission, the ratio between LTE LAA and Wi-Fi
TXOP is not balanced, especially when Wi-Fi does not
use or support frame aggregation. In order to balance the
TXOP of LTE and Wi-Fi, in our previous work [9], we pro-
posed an adaptive LTE LBT scheme namedmLTE-U. Similar
to LTE LAA, this scheme uses an anchor channel in licensed
band together with a secondary channel in unlicensed spec-
trum, which can be exploited by the eNB to transmit DL
traffic. mLTE-U requires a CCA procedure before a DL
transmission in the unlicensed spectrum and uses adaptable
LTE TXOP followed by an adaptable muting period. The
muting period can be exploited by other co-located tech-
nologies, such as Wi-Fi, to gain access to the medium. The
provided coexistence performance depends on the selection
of TXOP and muting period duration. This article further
extends our previous work by introducing a Q-learning tech-
nique for autonomous selection of the optimal TXOP and
muting period by an mLTE-U eNB that can enable fair coex-
istence betweenmLTE-U andWi-Fi. Additionally, this article
provides a system model analysis of the mLTE-U scheme
in coexistence with Wi-Fi, in comparison to [9], where the
mLTE-U scheme has been implemented and evaluated using
the NS3 simulation platform.

III. PROBLEM DEFINITION AND THE
PROPOSED SOLUTION
Recently, 3GPP published the LTE LAA standard in order to
enable the LTE operation in unlicensed spectrum as part of
LTE Release 13. In order to satisfy the regulations in regions
where an LBT procedure is mandatory, such as Europe and
Japan, LTE LAA defines a CCA procedure that must be
performed before a DL LTE transmission in the unlicensed
spectrum. Before a transmission, an eNB has to evaluate the
availability of the channel. If the channel is busy, then it must
defer its transmission and perform an exponential backoff.
When the channel is idle, then the eNB starts a transmission
burst for a duration that ranges from 2 ms up to 10 ms. The
transmission duration is defined by four different channel
access priority classes. Table 1 presents the different priority
classes as they are defined by the 3GPP LTE LAA stan-
dard. According to the standard, the priority classes 3 and 4
use a Tm cot,p that is equal to 10 ms if the absence of any
other co-located technology sharing the same channel can be
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guaranteed on a long term basis. Otherwise, the LTE trans-
mission duration in unlicensed spectrum is limited to 8 ms.

On the contrary, in traditionalWi-Fi network, the AP or the
station (STA) transmits only one packet after the medium
is estimated as idle, when frame aggregation is not sup-
ported or is not enabled. Such transmission typically lasts
for a few hundreds of µs. In various widely used Wi-Fi
standards such as 802.11a/g frame aggregation is not sup-
ported, but even if it is available (e.g. 802.11n/ac [28]),
in several cases it is not used depending on the traffic type
constraints such as low latency [29]. Additionally, 802.11e
uses Enhanced Distributed Channel Access (EDCA) that
defines four Access Categories (AC) [7]. Two of these AC,
named Background (AC_BK) and Best Effort (AC_BE),
define TXOPs of only a single frame. The other two, named
Video (AC_VI) and Voice (AC_VO), define TXOPs of
3.008 ms and 1.504 ms duration respectively. However, these
TXOPs are not balanced compared to the TXOPs defined for
LTE LAA that can go up to 10 ms and although they have
defined by the standard, practical implementations rarely use
them.

It is clear that the ratio between the transmission duration
of LTE and Wi-Fi in the unlicensed spectrum is not balanced
as the TXOP duration of LTE LAA is significantly longer
compared to the single packet transmission of Wi-Fi. In order
to deal with this concern, in our previous work [9], we pro-
posed the mLTE-U coexistence mechanism. mLTE-U is a
novel and adaptable technique that enables fair coexistence
between LTE and Wi-Fi. Before a transmission in the unli-
censed band, mLTE-Umust perform an LBTCat 4 procedure.
If the medium is estimated as idle, LTE can transmit DL
traffic for a variable TXOP duration, followed by a variable
muting period. Without loose of generality, the TXOP is
selected in a range of 2 ms up to 20 ms and the muting period
is selected in a range of 0 ms up to 20 ms. Fig. 1 shows the
mLTE-U scheme.

FIGURE 1. The design of the mLTE-U scheme.

In [9], the proposed scheme has been evaluated under
different coexistence scenarios (low to high LTE and
Wi-Fi density), investigating the different combination of
TXOP and muting period. This article goes a step further
by analytically studying the system model of mLTE-U in
coexistence with Wi-Fi and by employing a reinforcement
learning technique, more specifically a Q-learning technique,
so that an eNB can automatically and autonomously select
the optimal configuration parameters (TXOP and muting
period) that can lead to fair coexistence with other co-located
networks.

IV. SYSTEM MODEL
This section aims to analyze the system model of the pro-
posed mLTE-U scheme, when it coexists with Wi-Fi. All
the participating networks operate autonomously and can-
not exchange messages with each other. In this work and
similar to LTE Release 13, the eNB is able to transmit in
the unlicensed spectrum, while the UL traffic is transmitted
via the primary licensed band. We consider as active any
mLTE-U eNB, Wi-Fi AP andWi-Fi STA node that has traffic
to transmit in unlicensed spectrum. All the active nodes use
the same LBT algorithm with random backoff and variable
size of CW (similar to LBTCat 4). For instance, we consider a
scenario where one mLTE-U network consisting of one eNB
and one UE coexists with one Wi-Fi network consisting of
one AP and one STA. If the eNB, the AP and the STA have
data to transmit, then all these three nodes are indicated as
active. On the other hand, if only the eNB and the AP have
data to transmit, then only these two nodes are indicated as
active. It is assumed that all the co-located networks transmit
in a single unlicensed channel. For the sake of simplicity,
we assume that all the networks are in the proximity of each
other. This means that every transmission can be determined
by the Energy Detection (ED) mechanism of CCA for both
mLTE-U and Wi-Fi networks. ED is a function used by CCA
to determine the state of the channel, when the received signal
cannot be decoded. The CCAmechanism of 802.11 uses also
a second function, named Carrier Sense (CS). CS is used
when the receiver is able to detect and decode a received Wi-
Fi preamble [7].

Both mLTE-U and Wi-Fi use a Carrier Sensing Multiple
Access with Collision Avoidance (CSMA/CA) mechanism
to compete for the channel access. Before a transmission,
every network has to perform CCA in order to sense the
channel and discover if it is idle or busy. Before a new
transmission or after a successful transmission, a node has
to postpone its transmission for Distributed Coordination
Function (DCF) Inter-Frame Space (DIFS) plus a random
backoff time. The backoff time corresponds to the number
of idle timeslots (ts) that a node has to sense before a trans-
mission. The number of the ts is indicated by the backoff
counter, which is randomly selected within the range of the
CW. If a transmission is not successful and an acknowledg-
ment (ACK) is not received, the CW increases exponentially.
For both mLTE and Wi-Fi the CW ranges from CWmin
to CWmax.

We denote the number of the active mLTE-U eNBs as L
and the number of active Wi-Fi APs and active Wi-Fi STAs
as A and S respectively. The total number of the active Wi-Fi
nodes is denoted as W, where W = A + S. The probability
that a node tries to transmit at any moment is independent
of the previous transmissions. Furthermore, the transmission
probability is related to the size of the CW. By assuming
that the probability of a transmission to be involved in a
collision is very small, the transmission probability of the i-th
mLTE-U eNB pi and the transmission probability of the j-th
Wi-Fi node rj both depend on the CWmin and respectively are
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equal to:

pi =
1

CWmin,i + 1
, i = 1, . . . ,L (1)

and

rj =
1

CWmin,j + 1
, j = 1, . . . ,W (2)

As in the current model an mLTE-U eNB and aWi-Fi node
use the same CWmin value, they have equal probabilities to
access the medium.

According to the CCA mechanism that is used by both
networks, the time frame can be divided into four different
slots:

1) Collision slot Tcol, meaning that more than one of
the co-located nodes (eNBs, APs or STAs) attempt to
transmit simultaneously

2) Empty slot Tempty, meaning that none of the nodes
attempts to transmit

3) Successful mLTE-U transmission slot TmLTE-U, mean-
ing that only one eNB transmits, while the rest eNBs
and all the Wi-Fi nodes remain silent

4) SuccessfulWi-Fi transmission slot TWi-Fi, meaning that
only one Wi-Fi node transmits, while the rest Wi-Fi
nodes and all the eNBs remain silent.

Fig. 2 illustrates the system model of mLTE-U when it
coexists with Wi-Fi.

FIGURE 2. The system model of mLTE-U in coexistence with Wi-Fi.

The transmissions of each co-located network are indepen-
dent and identically distributed (i.i.d.). Hence, the probability
that the i-th mLTE-U eNB transmits successfully during a
slot is:

pmLTE-U
succ,i = pi ×

L∏
l 6=i

(1− pl)×
W∏
j=1

(1− r j) (3)

Similarly, the probability that the j-th Wi-Fi node transmits
successfully during a slot is:

pWi−Fisucc,j = rj ×
W∏
w6=j

(1− rw)×
L∏
i=1

(1− p i) (4)

The probability that a slot is empty is expressed as:

pempty =

L∏
i=1

(1− pi)×
W∏
j=1

(1− rj) (5)

while the probability that a collision occurs in a slot is
given by:

pcol = 1− pempty −

L∑
i=1

(pmLTE-U
succ,i )−

W∑
j=1

(pWi−Fisucc,j ) (6)

The total duration of the slots is expressed as:

Ttotal = Totempty + Totcol + TotWi-Fi + TotmLTE-U (7)

where Totempty and Totcol denote the total duration of the
empty and the collision slots respectively, TotWi-Fi denotes
the total duration of the successful Wi-Fi transmissions and
Tot mLTE-U represents the total duration of the successful
mLTE-U transmissions in unlicensed spectrum.

Furthermore, the total combined throughput of Wi-Fi can
be calculated by:

ThrWi-Fi =

W∑
j=1

(
DWi−FiThr,j

Ttotal
) (8)

where DWi−FiThr,j is the transmitted payload of Wi-Fi node j.
Similarly, the total combined throughput of mLTE-U in the
unlicensed band is expressed as:

ThrmLTE-U =

L∑
i=1

(
DmLTE-U
Thr,i

Ttotal
) (9)

where DmLTE-U
Thr,i is the transmitted payload of the i-th

mLTE-U eNB.

A. RESERVATION SIGNAL
An mLTE-U eNB must perform a CCA procedure before a
transmission to estimate if the channel is idle or not. Hence,
the medium can be sensed as idle at any time. However, LTE
is a scheduled technology on a sub-frame level, meaning that
every 1 ms the eNB scheduler assigns the wireless resources
to the active UE. This means that every data transmission
starts at the beginning of a subframe. To deal with this issue
and similar to our previous work in [9], a reservation signal
is used for mLTE-U in order to reserve the channel after it is
sensed as idle and before the beginning of the next subframe.
Fig. 3 illustrates the use of the reservation signal.

FIGURE 3. The reservation signal of the mLTE-U scheme.

The reservation signal is modeled by a uniformly dis-
tributed random variable in the interval [0,1]. A value close
to zero corresponds to a short duration of reservation signal.
This means that the channel is sensed as idle towards the
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ending of a subframe. A value close to one means that the
channel is sensed as idle in the beginning of a subframe.
Thus, the reservation signal is transmitted for the rest of the
subframe duration. The duration of the reservation signal is
deducted from the TXOP duration of the mLTE-U scheme.
For this reason, the minimum examined TXOP duration
is 2 ms.

V. FAIR COEXISTENCE
This section discusses the way that the two different param-
eters of mLTE-U scheme, named TXOP and muting period,
can be selected in order to ensure fair coexistence between
co-located mLTE-U and Wi-Fi networks. A fair coexistence
scheme should be able to provide to all the active nodes
in the unlicensed spectrum equal opportunities to the wire-
less resources. This must be done in a technology-agnostic
way, as all the nodes must be treated equally. According to
this approach, all the active mLTE-U eNBs, Wi-Fi APs and
Wi-Fi STAs should be able to gain equal spectrum access.

In an ideal world in which the different wireless tech-
nologies can communicate with each other, exchange their
spectral requirements and operate altruistically, the distribu-
tion of the wireless resources could be done in a fair and
harmonious way. However, in the real wireless world, sev-
eral diverse wireless technologies that have been designed,
each having different target group, different principles and
different requirements are forced to coexist with each other.
Additionally, the channel access mechanism of the different
technologies vary significantly between each other. In [9],
we saw that the obtained throughput, as well as the percentage
of channel occupancy are good indicators for measuring the
fairness that a coexistence technique can provide. According
to this approach, the parameters of mLTE-U must be selected
in a way that every co-located network can achieve an equal
ratio of throughput, compared to the maximum throughput
that it can achievewhen it operates in standalonemode,mean-
ing that it operates without any other co-located network.

This assumption requires that every node is able to identify
potential co-located networks and aproximate the number of
transmitting devices. This can be achieved using a wireless
technology recognition technique. Recently, the technology
recognition problem has attracted the attention of the wireless
community. As result, several techniques (e.g. [8] and [30])
have been proposed and can be used by an mLTE-U network
to identify the amount and the type of co-located wireless
technologies. Based on this information, anmLTE-U network
can select the TXOP and muting period so that it can offer
the desired proportional fair throughput. Further discussion
on the nature of these techniques is not in the scope of this
article and it is assumed that such a technology recognition
technique is available to an mLTE-U eNB.

In our system, the target throughput of anmLTE-U network
can be expressed as:

ThrmLTE-U
target,i =

ThrmLTE-U
standalone,i

L +W
(10)

where ThrmLTE-U
standalone,i is the throughput that the mLTE-U net-

work i can achieve in standalone operation using the maxi-
mum TXOP configuration (20 ms) and a muting period that
is equal to zero. A muting period that is equal to zero ensures
that the eNB can start competing for the medium immediately
after finishing a transmission of TXOP duration. Moreover,
the highest TXOP ensures that the eNB can transmit for
a longer period without interruption. The configuration of
TXOP has an impact on the obtained throughput. For a lower
TXOP, the eNB has to perform a CCA procedure more fre-
quently compared to a higher TXOP. This forces the eNB to
spend more time evaluating the channel compared to the case
in which it uses a high TXOP.

Considering the system that is described in Section IV,
the configuration of TXOP andmuting period for anmLTE-U
eNBmust be selected according to the following optimization
problem:

(TXOP∗i ,muting
∗
i )

= arg max
TXOP,muting

(| (| ThrmLTE-U
target,i

−ThrmLTE-U
i |)− ThrmLTE-U

target,i |)

s.t. C1 : 0 ≤ pi ≤ 1, i = 1, . . . ,L

C2 : 0 ≤ rj ≤ 1, j = 1, . . . ,W

C3 : | ThrmLTE-U
target,i − ThrmLTE-U

i |≤ ζ, i = 1, . . . ,L

C4 : TXOP ∈ [TXOPmin,TXOPmax]

C5 : muting ∈ [mutingmin,mutingmax]

(11)

This problem guarantees that the optimal TXOP and mut-
ing period values will be selected so that the obtained
mLTE-U throughput will be maintained close to the target
value, offering this way fair coexistence with other co-located
mLTE-U or Wi-Fi networks. The first constraint (C1) refers
to the transmission probability of an mLTE-U eNB, while
the second constraint (C2) refers to the transmission proba-
bility of aWi-Fi node. The third constraint (C3) indicates that
the absolute difference between the target throughput of eNB
i and the throughput that eNB i achieves after the TXOP and
muting period adjustment remains within a tolerance range
that is defined by ζ . This constraint ensures that the mLTE-U
throughput will remain in an acceptable range close to the
target throughput, giving transmission opportunities to other
co-located networks. The fourth (C4) and the fifth (C5) con-
straints ensure that the selected values of TXOP and muting
period will be within an acceptable range.

VI. PROPOSED Q-LEARNING FOR FAIR COEXISTENCE
BETWEEN MLTE-U AND WI-FI
This section discusses how Q-learning can be used in the
described model so that an eNB of an mLTE-U network
can learn from the environment and autonomously select the
appropriate TXOP and muting period combination that can
enable fair coexistence with other co-located mLTE-U orWi-
Fi networks.
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Q-learning is a type of Reinforcement Learning (RL) in the
area of machine learning. According to Q-learning, an agent
in a state s selects and performs an action a. After the action
a, it observes the environment and receives a reward r for this
specific action a. A discount factor γ models the percentage
that future rewards are taken into account compared to imme-
diate rewards. Hence, the scope of Q-learning is to find the
optimal policy π∗ for selecting an action in a given state that
maximizes the value of the total reward. In order to learn this
policy an agent has to estimate a value-function through expe-
rience. This function is called Q-function Qπ (s, a) [31]. The
Q-function expresses the expected accumulated discounted
future reward r that is obtained at time t by selecting an action
a in a state s and by following thereafter a policy π . This can
be expressed as follows:

Qπ (s, a) = E(
∞∑
t=1

γ t−1rt |s1 = s, a1 = a, π) (12)

Q-learning does not require a prior environment model
and it can be applied to any given Markov Decision Pro-
cess (MDP) model. The interaction of an agent with the
dynamic stochastic environment is represented by an experi-
ence tuple (st , at , st+1, rt ), where st is the state of an agent at
time t and at is the action that the agent chooses at time t from
the set of the available actions. Then, the agentmoves to a new
state st+1 at time t + 1, in which a reward rt associated with
the transition from the state st to the state st+1 is determined.
The Q-learning process can be represented by the following
update equation:

Qt+1(st , at )← Qt(st , at )+ η[rt + γQ′ − Qt(st , at )] (13)

where η is the learning rate and γ is the discount factor. The
learning rate can be set between 0 and 1. It determines the
percentage that the newly learned information will overwrite
the older knowledge. By setting the learning rate to 0 the
Q-values are never updated and as result nothing is learned.
By setting it to a high value such as 0.9 means that the agent
learns at a faster rate. The discount factor γ takes values in the
range [0,1]. When it is set to a value closer to one, the agent
will consider future rewards with greater weight. The value
of Q′ indicates the maximum reward that can be attained in
a state following the current one. In other words, it expresses
the reward for performing the optimal action from the current
state and is denoted as follows:

Q′ = max
a∈A

Qt(st+1, at ) (14)

where A is the set of all the possible actions (A =

{a1, a2, . . . , ai}) of the i-th agent.

A. DEFINITION OF Q-LEARNING ELEMENTS
In the investigating learning scenario, an eNB of an mLTE-U
network must learn to be configured with the appropriate
TXOP and muting period values that offer fair coexistence
with other mLTE-U or Wi-Fi networks using Q-learning.
To this end, the agents, states, actions and rewards for the
Q-learning algorithm are defined as follows:

1) AGENT
In the investigated multi-agent scenario, every i-th eNB of an
mLTE-U network is an agent, ∀i = 1, . . . ,L.

2) STATE
For every agent the state is selected by the interaction with the
environment. The state sit for an agent i at the time instance
t is represented as sit = {TXOP

i,mutingi}, where TXOPi ∈
[2, 20] and mutingi ∈ [0, 20] is the TXOP and the muting
period for the agent i respectively.

3) ACTION
The action of the agent i is to select the TXOP and muting
period that can offer fair coexistence with other co-located
wireless technologies.

4) REWARD
The reward for an action a of the agent i is given by the
following function:

rmLTE-U
i =



β × (| (| ThrmLTE-U
target,i − ThrmLTE-U

i |)

−ThrmLTE-U
target,i |)

for perf_dif < ζ

−100
for perf_dif ≥ ζ

(15)

where β determines the fraction of the positive reward,
perf_dif =| ThrmLTE-U

target,i − ThrmLTE-U
i | is the absolute

value of the difference in performance between the target
throughput of i-th eNB and the throughput that the i-th
eNB achieves after action a has been performed. Similar
to the third constraint in (11), ζ defines a tolerance range
for the achieved throughput in a state s. Hence, if after an
action the obtained throughput is close to the target through-
put (ThrmLTE-U

target,i ) meaning that their absolute difference is
within the tolerance range, then the agent receives a reward
that is proportional to the deviation of the obtained throughput
from the target throughput. Otherwise, the agent receives a
negative reward.

B. EXPLORATION STRATEGY
The scope of Q-learning is to find an optimal strategy in
the selection of an action a from a state s. Hence, a balance
between exploration and exploitation must be found. When
an agent exploits, it selects the currently expected optimal
action (Q′). On the other hand, when it explores, it selects ran-
domly an action in the hope that it will offer a higher cumu-
lative reward in the future. Hence, by exploring, an agent
investigates new actions, while by exploiting it selects the
optimal action from the already investigated actions. In this
article, the ε-greedy policy is used as exploration strategy.
ε-greedy uses 0 ≤ ε ≤ 1 in order to decide if the agent
will explore or exploit in every step. The agent chooses a
random action (explore) with probability ε and the action
with the highest Q-value from the current state (exploit) with
probability 1 − ε. When ε is configured with a high value,
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more exploration actions are selected by the agent. This is
useful for an agent to learn the environment and the optimal
policy.

In this article, an adjustable policy for the value of ε is
used. Initially or every time that a change to the wireless envi-
ronment is sensed by the technology recognition technique, ε
will be set to a high value (e.g. 1) in order to quickly explore
different states. After a number of iterations i_ε the value of
ε will be reduced by a p_ε value (e.g. 0.05), until a minimum
value of ε (m_ε) is reached (e.g. 0.05) or until the Q-learning
converges to the optimal solution.

Algorithm 1 presents the proposed Q-learning procedure
as it is described above and is required by an independent
mLTE-U network to select an optimal configuration that
enables fair coexistence with the co-located LTE or Wi-Fi
networks.

Regarding the computational complexity of the Q-learning
mechanism and similarly to other learning methods, a learn-
ing phase is required. During this phase, an agent discovers
the environment by investigating different possible actions
in every possible state. However, once the environment is
learned, the best action can be performed in any given state
resulting in the optimal solution. In case that the technology
recognition technique is not completely accurate, then the
proposed scheme can still achieve performance close to the
optimal one.

VII. SIMULATION ENVIRONMENT
In order to evaluate the proposed mLTE-U scheme and the
Q-learning algorithm for optimal and autonomous selection
of the mLTE-U parameters, simulations have been performed
using MATLAB.

For an mLTE-U network only the throughput in the unli-
censed spectrum is taken into consideration. Furthermore,
it is assumed that only LTE DL data traffic is transmit-
ted in the unlicensed spectrum, while the LTE UL traffic,
the LTE control signals and the Hybrid Automatic Repeat
Request (HARQ) are maintained in the licensed band of the
operator.

Regarding the Wi-Fi network, 802.11n mode has been
selected for the simulation model. This mode allows oper-
ation in 5 GHz unlicensed band. Additionally, it is assumed
that frame aggregation is disabled, so that only a single packet
is transmitted after the channel is estimated as idle. Table 2
presents the system parameters that have been used forWi-Fi.

The average backoff time for a Wi-Fi transmission can be
expressed as:

TAv_BO = CWmin ×
ts
2

(16)

Additionally, the duration of the acknowledgment is
given by:

Tack = Tplcp +
⌈
Ls + Lack + Lt

nsym

⌉
× Tsym (17)

The duration (Tplcp) of Physical Layer Conformance Pro-
cedure (PLCP) is 20µs and corresponds to 8µs for the Short

Algorithm 1 Q-learning for mLTE-U optimal configura-
tion selection

Initialization:
TXOPmin, set minimum TXOP value
TXOPmax , set maximum TXOP value
mutingmin, set minimum muting value
mutingmax , set maximum muting value
t_r , technology recognition result
ε, set the ε-greedy to a high value (e.g. 1)
i_ε, set the number of the iterations before reduce ε
p_ε, set the rate in which ε will be reduced
m_ε, set the minimum value of ε
ζ , set the throughput tolerance
β, set the fraction of the positive rewards
η, set the learning rate
γ , set the discount factor
for every i-th mLTE-U eNB, where i = 1, . . . , L do

Set iteration = 0, Qi,0(s, a) = 0
Randomly choose a starting state
si,0 = TXOPi,0,mutingi,0 and evaluate it

end

Learning procedure:
while (t_r has not changed) OR (convergence is not
achieved) do

if (a number of iterations i_ε has been reached) &
(ε > m_ε) then

ε = ε − p_ε
end
Randomly choose prob_e ∈ [0, 1]
if prob_e < ε then

[exploration procedure]
Select the next action ai,t randomly

else
[exploitation procedure]
Select the next action ai,t based on the
max(Q-value): maxQi,t (si,t , ai,t )

end
Execute ai,t
Receive an immediate throughput ThrmLTE-U

i,t

if (| ThrmLTE-Utarget,i − ThrmLTE-Ui,t |< ζ ) then

rmLTE-U
i,t = β × (| (|

ThrmLTE-U
target,i − ThrmLTE-U

i,t |)− ThrmLTE-U
target,i |)

else
rmLTE-U
i,t = −100

end
Update the Q-table (according to 13) as follows:
Qi,t+1(si,t , ai,t )← Qi,t(si,t , ai,t )+ η[rmLTE-U

i,t +

γ max
ai,t∈A

Qi,t(si,t+1, ai,t )− Qi,t(si,t , ai,t )]

Next state: si,t+1
end

Monitor the wireless environment:
while (true) do

Periodically monitor the wireless environment
if (a change is identified) then

Update t_r
Restart Learning procedure

end
end
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TABLE 2. Wi-Fi simulation parameters.

Training Field (STF), 8µs for the Long Training Field (STF)
and 4µs for the SIGNAL field.
The duration of a data-packet transmission is given by:

Tdata = Tplcp +
⌈
Ls + LMAC_h + D+ Lt

n sym

⌉
× Tsym (18)

Hence, the total duration of a successful Wi-Fi transmis-
sion can be expressed as:

Tsuc = TDIFS + TAv_BO + TSIFS + Tack + Tdata (19)

For both mLTE-U and Wi-Fi networks 20 MHz of band-
width is used. For Wi-Fi, 64-Quadrature Amplitude Mod-
ulation (QAM) modulation scheme and 3/4 coding scheme
has been used that correspond to the 6th Modulation and
Coding Scheme (MCS) Index [7]. On the other hand, for
mLTE-U transmission in the unlicensed spectrum, the trans-
mission data rate is equal to 150 Mbps. This corresponds to
2×2 MIMO, 64-QAM, 28th MCS Index and 26th Transport
Block Size (TBS) Index, as it is defined in 3GPP specs
36.213 [5].

During the simulation, it is assumed that all the nodes
for both mLTE-U and Wi-Fi networks are in the proxim-
ity of each other. This way, during every transmission the
ED threshold is surpassed and the backoff mechanisms of
mLTE-U and Wi-Fi are triggered. The ED threshold of the
mLTE-U CCA mechanism is equal to the ED threshold of
Wi-Fi.

Concerning the Q-learning parameters, they are listed
in Table 3. The ε parameter initially takes a high value (e.g. 1)
in order to explore fast new states. As the number of iterations
increases and all or most of the states are reached at least
once, the ε value decreases by p_ε, until a minimum value
of ε is reached (m_ε). During the simulations, the number of

TABLE 3. Q-learning simulation parameters.

iterations before ε decreases is computed as:

i_ε = (TXOPmax − TXOPmin + 1)

(mutingmax − mutingmin + 1) (20)

that corresponds to the total number of the possible states.

VIII. PERFORMANCE EVALUATION
A. STANDALONE OPERATION FOR mLTE-U AND Wi-Fi
This section presents the performance of the designed sys-
tem, when mLTE-U and Wi-Fi operate in standalone mode.
Thus, they do not need to compete for the wireless medium
with other co-located networks. Both mLTE-U and Wi-Fi
networks consist of one base station and one end-device.

FIGURE 4. Throughput of mLTE-U for the different TXOP and muting
period configurations, during the standalone scenario.

Fig. 4 illustrates the obtained DL throughput results of
mLTE-U network in standalone mode. The x-axis holds the
different muting period configurations in ms ranging from
0 ms to 20 ms. The different TXOP durations in ms ranging
from 2 ms to 20 ms are representing with different colors.
Finally, the y-axis shows the obtained throughput in Mbps
for every possible combination of TXOP and muting period.

From the figure, it is clear that the throughput for every
different TXOP decreases as the duration of themuting period
increases. Of course, this is to be expected as a higher muting
period increases the idle period of an eNB. Respectively,
it can be seen that for a specific muting period, the obtained
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throughput increases as the TXOP increases. As the TXOP
duration increases, the mLTE-U has to perform less often a
CCA procedure before it transmits again. This has an impact
on the obtained throughput, as for higher TXOP the eNB
spends less time evaluating the channel compared to a sce-
nario in which a lower TXOP duration is used.

Hence, the minimum obtained throughput corresponds to
an mLTE-U configuration, in which TXOP has the smallest
value (2 ms) and it is followed by a muting period of the
longest duration (20 ms). On the contrary, the maximum
obtained throughput can be achieved when the maximum
TXOP is used (20 ms) followed by the minimum muting
period (0 ms).

According to the simulation results and after the introduc-
tion of CCA, the highest throughput value of mLTE-U for
TXOP = 20 ms and muting = 0 ms is 145.28 Mbps. This
value will be used for the computation of the target mLTE-U
throughput in (10) that is used by the Q-learning algo-
rithm. Regarding the Wi-Fi network, the obtained standalone
throughput is stable over time and corresponds to 30.8Mbps.

B. mLTE-U AND Wi-Fi COEXISTENCE
In this section, coexistence scenarios between mLTE-U and
Wi-Fi of high interest are discussed. This will help the reader
to understand the role of Q-learning in selecting the mLTE-U
configurations that can offer fair coexistence with other
co-located networks. Further details on the coexistence
between mLTE-U and Wi-Fi can be found in [9].

FIGURE 5. Throughput of mLTE-U during the single mLTE-U and single
Wi-Fi coexistence scenario.

1) EVALUATION OF SINGLE mLTE-U AND SINGLE
Wi-Fi COEXISTENCE
In this scenario, one mLTE-U network coexists with one
Wi-Fi network. The mLTE-U network consists of one eNB
and one UE, while the Wi-Fi network consists of one AP
and one STA. Both networks transmit only DL traffic. Fig. 5
depicts the mLTE-U throughput and Fig. 6 theWi-Fi through-
put for every possible combination of TXOP and muting
period. In both figures, the x-axis holds the different muting
period configurations in ms. The different TXOP configura-
tions (in ms) are depicted with different colors. The y-axis

FIGURE 6. Throughput of Wi-Fi during the single mLTE-U and single Wi-Fi
coexistence scenario.

presents the obtained throughput in Mbps for every combina-
tion of TXOP and muting period.

As it can be observed and similar to the standalone
scenario, the mLTE-U throughput increases as the TXOP
increases. Also, a shorter muting period offers higher
throughput compared to a longer one as mLTE-U can com-
pete more often for accessing the medium. Furthermore,
the throughput values are slightly lower compared to the
standalone scenario. This occurs due to the co-located Wi-
Fi network that competes for the medium and eventually
gains access to it. On the other hand, the Wi-Fi throughput
increases when the muting period of mLTE-U increases. This
is to be expected, as Wi-Fi can exploit the muting period for
further transmissions. Additionally, the Wi-Fi throughput is
inversely proportional to the TXOP of mLTE-U. During a
short TXOP, Wi-Fi has more often opportunities to compete
for the medium and access it compared to a longer TXOP dur-
ing which mLTE-U occupies the medium for longer period of
time.

2) EVALUATION OF MULTIPLE mLTE-U AND MULTIPLE Wi-Fi
COEXISTENCE
In this scenario, multiple mLTE-U and multiple Wi-Fi net-
works coexist among each other. More specifically, three
mLTE-U networks coexist with three Wi-Fi networks cre-
ating this way a dense wireless environment. Each one of
the mLTE-U and Wi-Fi networks consists of one base station
and one end-device. Each network transmits only DL traffic.
Similarly to the previous subsection (VIII-B.1), Fig. 7 and
Fig. 8 show the mLTE-U combined throughput and the Wi-Fi
combined throughput respectively.

Fig. 8 clearly indicates that the performance of the Wi-Fi
networks is severely impacted by the co-located mLTE-U
networks for most of the mLTE-U configurations. Only when
mLTE-U is configured with a short TXOP that is followed by
a relatively long muting period, the combined throughput of
Wi-Fi is improved. In case of multiple mLTE-U nodes, there
is a high possibility that a muting period of an mLTE-U net-
work is exploited by the TXOP of another mLTE-U network.
This impact becomes higher when the mLTE-U networks are
configured to use a high TXOP duration combined with a low
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FIGURE 7. Combined throughput of mLTE-U during the multiple mLTE-U
and multiple Wi-Fi coexistence scenario.

FIGURE 8. Combined throughput of Wi-Fi during the multiple mLTE-U and
multiple Wi-Fi coexistence scenario.

muting period. However, when the mLTE-U networks use
a short TXOP and a high muting period, they remain silent
simultaneously for a longer period and Wi-Fi can exploit the
remaining muting period in order to transmit. Furthermore,
in case of multiple Wi-Fi networks the exploitation of a
muting period is less optimal as they compete among each
other to access the medium.

C. FAIR COEXISTENCE USING Q-LEARNING
As shown in the previous subsection, the performance of
coexisting mLTE-U and Wi-Fi networks depends on the den-
sity of the environment, as well as on the configuration of
mLTE-U. The numerous combinations of TXOP and muting
period offer different coexistence conditions that vary based
on the number of co-located networks. As a wireless environ-
ment is dynamic and new networks are activated and deacti-
vated often, it is important for a coexistence scheme to be
self-adaptive. This section discuses the way that Q-learning
technique, as it has been discussed in Section VI, can assist
an mLTE-U network in optimally selecting the TXOP and
muting period in order to provide fair coexistence with other
co-located wireless technologies in unlicensed spectrum.

1) Q-LEARNING FOR SINGLE mLTE-U AND SINGLE
Wi-Fi COEXISTENCE
Fig. 9 illustrates the convergence of the Q-learning algorithm
during the scenario in which one mLTE-U network coexists

FIGURE 9. Convergence of Q matrix sum during the learning process for
the single mLTE-U and single Wi-Fi scenario.

with one Wi-Fi network, similar to Section VIII-B.1. On the
horizontal axis is the number of iterations and on the vertical
axis is the sum of the values in the Q matrix. When the sum
of the Q matrix converges, the agent has learned the current
environment and can perform the optimal actions in any state.

It can be observed that in the beginning of the learning
process the sum ofQmatrix decreases. This occurs as initially
due to the high degree of exploration, the agent (mLTE-U
eNB) tries many different states. Most of these states do not
offer the desired fairness. This way the agent receives low
rewards. As the learning continues, the agent locates the states
that can provide fair coexistence with the Wi-Fi network,
increasing the received reward. After a sufficient amount of
iterations (e.g. 3000), it can be seen that the agent has learned
the configurations that can lead to fair coexistence and the
sum of Q matrix starts converging.

FIGURE 10. Throughput of mLTE-U and Wi-Fi for the selected by
Q-learning configurations of TXOP and muting period during the single
mLTE-U and single Wi-Fi scenario.

Fig. 10 presents the throughput of mLTE-U and Wi-Fi
for the selected by Q-learning configurations (TXOP and
muting period) and for the same scenario as above, where
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FIGURE 11. Convergence of Q matrix sum during the learning process for
the multiple mLTE-U and multiple Wi-Fi scenario.

one mLTE-U network coexists with one Wi-Fi. The TXOP
and muting period configurations that have been learned by
Q-learning are able to provide to the mLTE-U network a
throughput that is in the desired range of ThrmLTE-U

target ± ζ ,

where in the specific scenario and from (10) ThrmLTE-U
target =

72.64 Mbps and ζ = 3 Mbps. As can be seen from the
results, all the selected configurations are capable to provide
the desired fair coexistence with Wi-Fi, as the co-located Wi-
Fi network is able to obtain a throughput close to 15 Mbps.
Hence, both networks can achieve half of the throughput that
can be reached during the respective standalone operation.

Based on the traffic requirements that an eNBmust satisfy,
it can select the appropriate configuration among the ones
that have been identified by the Q-learning procedure and
can provide fair coexistence with the co-located networks.
For instance, in case of voice traffic (AC_VO), an mLTE-U
network can select a configuration that requires a shorter
muting period. On the other hand, when best effort traf-
fic (AC_BE) must be served, an mLTE-U network can select
a configuration that offers a longer muting period combined
with a shorter TXOP.

2) Q-LEARNING FOR MULTIPLE mLTE-U AND MULTIPLE
Wi-Fi COEXISTENCE
Fig. 11 presents the convergence of the Q-learning algorithm
for the coexistence scenario similar to Section VIII-B.2,
in which three mLTE-U networks and three Wi-Fi networks
coexist with each other.

By observing Fig. 9 and Fig. 11, it can be seen that in case
of multiple mLTE-U andWi-Fi networks (Fig. 11) the sum of
the Q matrix initially decreases in a higher grade compared
to the case of a single mLTE-U and Wi-Fi network (Fig. 9).
In the case of multiple mLTE-U and Wi-Fi networks, many
co-located networks have to gain equal access to the medium.
Hence, the mLTE-U configurations that can offer fair coex-
istence are limited compared the configurations of the single
mLTE-U and Wi-Fi network. For this reason, during the first
iterations of Q-learning, an agent will explore more states
that give a negative reward, which entails a reduced sum of
Qmatrix. As the agent learns the environment and approaches
the target, it chooses states that can give high reward, increas-
ing the sum of Q matrix, until it finally converges.

FIGURE 12. Throughput of mLTE-U and Wi-Fi for the selected by
Q-learning configurations of TXOP and muting period during the multiple
mLTE-U and multiple Wi-Fi scenario.

Fig. 12 illustrates the TXOP and muting period configura-
tions that can offer fair coexistence during this dense scenario,
as they have been selected by the Q-learning mechanism.
As discussed, it can be observed that compared to the single
mLTE-U and singleWi-Fi scenario, the desired combinations
are fewer due to the multiple coexisting networks.

3) FURTHER DISCUSSION
Q-learning is fundamentally designed to be able to adapt
to the changes of the environment. This way, an agent can
update the Q-table and learn new optimal actions towards the
achievement of its target. Regarding the mLTE-U scheme,
a change in the status of the wireless environment can be iden-
tified using a technology recognition scheme. Such change
can be the activation of a new network or the deactivation of
a previously active network.

FIGURE 13. Convergence of Q matrix sum during the learning process
and adaptation to the changes of the wireless environment.

Fig. 13 shows the convergence of Q-learning for a scenario
in which initially one mLTE-U network coexists with one
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FIGURE 14. Throughput histogram of mLTE-U and Wi-Fi for the proposed Q-learning, random and round-robin selection schemes.

Wi-Fi network and at some point a second mLTE-U network
is activated. As it can be seen, the first part of the diagram
is similar to the one that is depicted in Fig. 9, as only
one mLTE-U network coexists with one Wi-Fi. After the
7000th repetition, a new mLTE-U network is activated. Then,
an agent starts identifying the new mLTE-U parameters that
can offer fair coexistence regarding the new conditions in
the wireless environment using Q-learning. At this point,
the ε value of the ε−greedy exploration strategy is reset to
1. As shown in Fig. 13 the sum of Q matrix starts decreasing
as new states are explored and in most of the cases they
do not meet the new target that is computed by (10). Thus,
an agent receives often negative reward. As the amount of
iterations increases and an agent learns the new environ-
ment, the cumulative reward increases and finally converges
again.

As can be seen, the integration of Q-learning in the
mLTE-U scheme can be of great importance towards the
provision of fair coexistence between LTE and Wi-Fi in unli-
censed spectrum. Q-learning can render an mLTE-U network
capable to operate autonomously by learning and adapting
into a dynamic wireless environment.

D. COMPARISON OF THE PROPOSED Q-LEARNING WITH
CONVENTIONAL SELECTION SCHEMES
In this section, we compare the coexistence of mLTE-U
with Wi-Fi, when mLTE-U selects the optimal configuration
parameters using Q-learning with the case that mLTE-U is
configured using conventional selection schemes, such as
random and round-robin selection. According to the random
selection scheme, mLTE-U configures the TXOP and muting
period by selecting random values. For this scheme, uni-
formly distributed random selection is used. When round-
robin is used, mLTE-U selects consecutively all the different
configurations of TXOP and muting period. Such conven-
tional mechanisms require lower complexity than Q-learning,

as Q-learning must first learn the environment in order to
offer optimal configurations. For this comparison and similar
to Section VIII-B.1, we consider a scenario, in which one
mLTE-U network coexists with one Wi-Fi network.

Fig. 14 presents the histogram of mLTE-U and Wi-Fi
throughput for all the examined selection mechanisms.
Fig. 14 (a) and Fig. 14 (d) show the respective histogram
of the mLTE-U and Wi-Fi throughput according to the
Q-learning mechanism. Fig. 14 (b) and Fig. 14 (e) present
respectively the histogram of mLTE-U and Wi-Fi throughput
when random selection mechanism is used and Fig. 14 (c)
and Fig. 14 (f) illustrate the histogram of the corresponding
mLTE-U and Wi-Fi throughput when round-robin selection
mechanism is used. For every scenario, the throughput is
calculated for the same number of iterations (7000 iterations).
In every figure, the x-axis holds the obtained throughput value
in Mbps, classified into series of intervals. The y-axis holds
the frequency of the throughput value, meaning in how many
iterations the obtained throughput value was in a specific
interval.

As can be observed, in both random and round-robinmech-
anisms, the obtained throughput of mLTE-U and Wi-Fi is
spread over all the possible values of the throughput that can
be achieved by each network. This is related to the nature
of the selection schemes, as the random scheme chooses in
every interval a random pair of TXOP and muting period,
while the round-robin scheme selects consecutively all the
available combinations (serially one pair in each interval).
Furthermore, in Fig. 14, it can be seen that the histograms
of the random and the round-robin mechanisms are similar.
This is related to the high number of iterations. In a long
term basis and due to the uniformly distributed randomness,
the random scheme selects every combination of TXOP and
muting period for almost equal amount of times.

The supremacy of the proposed Q-learning scheme over
the conventional schemes can be clearly seen in the
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graphs (a) and (d). As shown, using Q-learning the mLTE-U
network learns the optimal configuration parameters that
offer fair coexistence with the co-located Wi-Fi network.
During the first iterations of Q-learning that correspond to
the exploration phase the obtained throughput of mLTE-U
and Wi-Fi varies, as very often random actions are chosen
due to the high ε value. As the agent learns the environment
and the value of ε decreases, the exploitation phase increases.
As result, the agent chooses more and more often configu-
ration values that approach the target value (ThrmLTE-U

target )
of the mLTE-U throughput. Hence, the dominant majority
of the obtained mLTE-U throughput approaches its target
value (72.64 Mbps), offering fair coexistence to Wi-Fi that
achieves also half of its maximum throughput (15.4Mbps).

IX. CONCLUSION
In our days and towards 5G, the number of heterogeneous
networks increases rapidly. These networks consist of diverse
wireless technologies with different requirements. The intro-
duction of LTE-U has pushed the wireless community to
find solutions that can enable fair coexistence of LTE with
other well-established technologies in unlicensed spectrum.
Towards a global solution that respects the regional require-
ments worldwide, 3GPP announced the LTE LAA standard
according to which, LTE can operate in unlicensed spectrum
through a secondary cell and by performing a CCA procedure
before a transmission.

However, the ratio of transmission opportunities between
LTE LAA and Wi-Fi is not balanced, especially in the
case that Wi-Fi does not use frame aggregation. In order to
enhance the fairness of LTE-U, an adaptable scheme named
mLTE-U has been proposed. According to mLTE-U, LTE can
transmit in unlicensed spectrum using an adaptable TXOP
after a successful CCA. A TXOP is followed by an adaptable
muting period. This muting period can be exploited by other
co-located networks in order to gain access to the wireless
medium.

In this article, we analytically study the mLTE-U scheme.
The systemmodel of mLTE-U, when it coexists withWi-Fi is
analyzed. Additionally, we introduce a Q-learning technique
that can be used by an mLTE-U network to learn the wireless
environment and autonomously select the TXOP and muting
period configurations that can provide fair coexistence with
other co-located technologies. Simulation results show how
Q-learning can assist mLTE-U to find optimal configura-
tions and be adapted to changes of the wireless environ-
ment providing the desired fair coexistence. Furthermore,
the proposed scheme is compared with conventional selection
schemes, revealing its supercity in providing fair coexistence
with Wi-Fi.

In the near future, this work can be extended by exploit-
ing deep Q-learning using neural networks, towards opti-
mal selection of the mLTE-U parameters that can offer fair
coexistence between mLTE-U and other co-located wireless
technologies.
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