138 research outputs found

    Reliable load-balancing routing for resource-constrained wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are energy and resource constrained. Energy limitations make it advantageous to balance radio transmissions across multiple sensor nodes. Thus, load balanced routing is highly desirable and has motivated a significant volume of research. Multihop sensor network architecture can also provide greater coverage, but requires a highly reliable and adaptive routing scheme to accommodate frequent topology changes. Current reliability-oriented protocols degrade energy efficiency and increase network latency. This thesis develops and evaluates a novel solution to provide energy-efficient routing while enhancing packet delivery reliability. This solution, a reliable load-balancing routing (RLBR), makes four contributions in the area of reliability, resiliency and load balancing in support of the primary objective of network lifetime maximisation. The results are captured using real world testbeds as well as simulations. The first contribution uses sensor node emulation, at the instruction cycle level, to characterise the additional processing and computation overhead required by the routing scheme. The second contribution is based on real world testbeds which comprises two different TinyOS-enabled senor platforms under different scenarios. The third contribution extends and evaluates RLBR using large-scale simulations. It is shown that RLBR consumes less energy while reducing topology repair latency and supports various aggregation weights by redistributing packet relaying loads. It also shows a balanced energy usage and a significant lifetime gain. Finally, the forth contribution is a novel variable transmission power control scheme which is created based on the experience gained from prior practical and simulated studies. This power control scheme operates at the data link layer to dynamically reduce unnecessarily high transmission power while maintaining acceptable link reliability

    Energy-efficient and lifetime aware routing in WSNs

    Get PDF
    Network lifetime is an important performance metric in Wireless Sensor Networks (WSNs). Transmission Power Control (TPC) is a well-established method to minimise energy consumption in transmission in order to extend node lifetime and, consequently, lead to solutions that help extend network lifetime. The accurate lifetime estimation of sensor nodes is useful for routing to make more energy-efficient decisions and prolong lifetime. This research proposes an Energy-Efficient TPC (EETPC) mechanism using the measured Received Signal Strength (RSS) to calculate the ideal transmission power. This includes the investigation of the impact factors on RSS, such as distance, height above ground, multipath environment, the capability of node, noise and interference, and temperature. Furthermore, a Dynamic Node Lifetime Estimation (DNLE) technique for WSNs is also presented, including the impact factors on node lifetime, such as battery type, model, brand, self-discharge, discharge rate, age, charge cycles, and temperature. In addition, an Energy-Efficient and Lifetime Aware Routing (EELAR) algorithm is designed and developed for prolonging network lifetime in multihop WSNs. The proposed routing algorithm includes transmission power and lifetime metrics for path selection in addition to the Expected Transmission Count (ETX) metric. Both simulation and real hardware testbed experiments are used to verify the effectiveness of the proposed schemes. The simulation experiments run on the AVRORA simulator for two hardware platforms: Mica2 and MicaZ. The testbed experiments run on two real hardware platforms: the N740 NanoSensor and Mica2. The corresponding implementations are on two operating systems: Contiki and TinyOS. The proposed TPC mechanism covers those investigated factors and gives an overall performance better than the existing techniques, i.e. it gives lower packet loss and power consumption rates, while delays do not significantly increase. It can be applied for single-hop with multihoming and multihop networks. Using the DNLE technique, node lifetime can be predicted more accurately, which can be applied for both static and dynamic loads. EELAR gives the best performance on packet loss rate, average node lifetime and network lifetime compared to the other algorithms and no significant difference is found between each algorithm with the packet delay

    Resource-Aware and Link Quality Based Routing Metric for Wireless Sensor and Actor Networks

    Full text link
    Abstract—This paper presents a resource-aware and link quality based (RLQ) routing metric to address energy limitations, link quality variations, and node heterogeneities in wireless sensor and actor networks (WSANs). The RLQ metric is a combined link cost metric, which is based on both energy efficiency and link quality statistics. The primary objective of the proposed metric is to adapt to varying wireless channel conditions, while exploiting the heterogeneous capabilities in WSANs. Different from most of the existing simulation based studies, this research effort is guided by extensive field experiments of link quality dynamics at various locations over a long period of time using recent sensor platforms, which realistically addresses the real-world wireless communication challenges in WSANs. Performance evaluations, via test-bed experiments, show that the RLQ routing metric achieves high performance in terms of packet reception rate, network throughput and network lifetime. I

    A holistic approach to ZigBee performance enhancement for home automation networks

    Get PDF
    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.Postprint (published version

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Contributions to the performance evaluation and improvement of the IPv6 routing protocol for low-power and lossy networks

    Get PDF
    Wireless Sensor Networks (WSNs) have become increasingly important. These networks comprise sensor and actuator nodes that enable intelligent monitoring and control applications in a wide spectrum of environments including smart cities, home automation, remote health and precision agriculture to mention a few. In certain IETF circles, networks of these characteristics are called Low Power and Lossy Networks (LLNs). Whereas most LLN protocol architectures were born without native IP support, there exists a tendency in the market towards IP convergence, since IP-based LLNs offer an open and tandardized way of connecting LLNs to the Internet, thus nabling the Internet of Things (IoT). Since most LLN configurations are multihop, and thus a routing protocol is required, the IETF created the Routing Over Low power and Lossy networks (ROLL) working group, which decided to develop a new routing protocol called IPv6 Routing Protocol for LLNs (RPL). RPL was specifically designed to meet the requirements of LLNs and is a central component of the IETF protocol suite for the IoT. Since RPL has already been deployed in millions of nodes, it is fundamental to characterize its properties, evaluate the influence of its main parameters and options on network performance, and analyze performance improvement possibilities. This PhD thesis presents the following original contributions in this field: 1. Evaluation of the influence of the main RPL parameters on the network convergence process over IEEE 802.15.4 multihop networks, in terms of network characteristics such as size and density. In addition, a mechanism that leverages an option available in RPL for accelerating network convergence has been proposed and evaluated. This study provides a guideline for configuring and selecting adequately crucial RPL parameters and mechanisms for achieving high network convergence performance, as well as a characterization of the related performance trade-offs. 2. Development of an analytical model for estimating the network convergence time of RPL in a static chain topology network of IEEE 802.15.4 nodes, in the presence of bit errors. Results show the scenarii in terms of BER and chain topology length that may dramatically degrade performance experienced by a user. The model provides a lower bound on the network convergence time for a random topology network. 3. Development of an analytical tool to estimate the number of control messages transmitted in a random topology static network which uses the Trickle algorithm (a transmission scheduling algorithm used in RPL) under steady state conditions. Results show the accuracy of the model, which can be used for both synchronous and asynchronous networks. The slight difference in performance between these two network configurations is discussed and illustrated. 4. Theoretical evaluation of the route change latency incurred by RPL when 6LoWPAN Neighbor Discovery (ND) is used. On this basis, a study on the impact of the relevant 6LoWPAN ND and RPL parameters on path availability and the trade-off between path availability and message overhead, has been carried out. 5. Development of a RPL simulator for OMNeT++ using the MiXiM framework.La importància de les Wireless Sensor Networks (WSNs) ha estat creixent significativament en els darrers anys. Aquestes xarxes comprenen node sensors i actuadors que possibiliten aplicacions de control i monitorització en un ampli ventall d'entorns, incloent les ciutats intel·ligents, automatització residencial, etc. En alguns cercles de l'IETF, aquestes xarxes són anomenades Low Power and Lossy Networks (LLNs). La majoria d'arquitectures de protocols van néixer sense suport natiu per a IP, per ha existit recentment una tendència en el mercat envers la convergència IP, ja que les LLN basades en IP ofereixen una manera oberta i estandaritzada de connectar LLNs a Internet, tot creant la Internet de les Coses. Atès que moltes configuracions de LLNsn multisalt, i per tant es requereix un protocol d'encaminament, l'IETF va crear el Routing Over Low power and Lossy networks (ROLL) working group, que va decidir dissenyar un nou protocol anomenat IPv6 Routing Protocol for LLNs (RPL). RPL va ser específicament dissenyat per complir amb els requeriments de les LLNs i és un component central de la pila de protocols de l'IETF per a la Internet de les Coses. Atès que RPL ha estat desplegat en milions de nodes, és fonamental caracteritzar les seves propietats, avaluar la influència dels seus paràmetres principals i opcions en el rendiment, i analitzar les possibilitats de millora del protocol. Aquesta tesi presenta les següents contribucions originals en aquest camp: 1. Avaluació de la influència dels principals paràmetres de RPL en el procés de convergència de la xarxa en xarxes IEEE 802.15.4, en termes de característiques com la mida i la densitat de la xarxa. A més a més, s'ha proposat i avaluat un mecanisme que utilitza una opci disponible en el RPL per a accelerar la convergència de xarxa. Aquest estudi proporciona una guia per configurar i escollir adequadament paràmetres crucials del protocol RPL per tal d'assolir una ràpida convergència de xarxa, això com una caracteritzaci dels compromisos relacionats. 2. Desenvolupament d'un model analátic per estimar el temps de convergència de xarxa de RPL en una topologia de xarxaestàtica en cadena de nodes IEEE 802.15.4, en presència d'errors. Els resultats mostren els escenaris en termes de BER i mida de la cadena que poden degradar les prestacions percebudes per l'usuari. El model proporciona una fita inferior del temps de convergència de xarxa per a una topologia aleatòria. 3. Desenvolupament d'una eina analítica per estimar el nombre de missatges de control transmesos en una xarxa de topologia aleat ria i estàtica on s'usa l'algoritme Trickle (algoritme de planificació i control de les transmissions emprat en RPL), en condicions de règim permanent. Els resultats mostren la precisió del model, que pot ser emprat en xarxes síncrones i asíncrones. La lleugera diferència de prestacions entre un escenari i l'altre és discutida i il·lustrada. 4. Avaluació teòrica del temps de canvi de ruta de RPL quan s'usa 6LoWPAN Neighbor Discovery (ND). En base a aixó , es realitza un estudi de l'impacte dels paràmetres rellevants de RPL i 6LoWPAN ND en la disponibilitat de cambi el compromís amb l'overhead de missatges. 5. Desenvolupament d'un simulador de RPL per a OMNeT++ usant el MiXiM framewor

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    Improvements to end-to-end performance of low-power wireless networks

    Get PDF
    Over the last decades, wireless technologies have become an important part of our daily lives. A plentitude of new types of networks based on wireless technologies have emerged, often replacing wired solutions. In this development, not only the number and the types of devices equipped with wireless transceivers have significantly increased, also the variety of wireless technologies has grown considerably. Moreover, Internet access for wireless devices has paved the way for a large variety of new private, business, and research applications. Great efforts have been made by the research community and the industry to develop standards, specifications, and communication protocols for networks of constrained devices, we refer to as Wireless Sensor Networks (WSNs). The Institute of Electrical and Electronics Engineers (IEEE) defined the 802.15.4 standard for Personal Area Networks (PANs). With the introduction of an adaptation layer which makes IEEE 802.15.4 networks IPv6-capable, interconnecting billions of constrained devices has become possible and is expected to become a reality in the near future. The vision that embraces the idea of interweaving Internet technology with any type of smart objects, such as wearable devices or sensors of a WSN, is called the Internet of Things (IoT). The main goal of this thesis is the improvement of the performance of low-power wireless networks. Given the wide scope of application scenarios and networking solutions proposed for such networks, the development and optimization of communication protocols for wireless low-power devices is a challenging task: The hardware restrictions of constrained devices, specific application scenarios that may vary from one network to another, and the integration of WSNs into the IoT require new approaches to the design and evaluation of communication protocols. To face these challenges and to find solutions for them, research needs to be carried out. Mechanisms and parameter settings of communication protocol stacks for WSNs that are crucial to the network performance need to be identified, optimized, and complemented by adding new ones. The first contribution of this thesis is the improvement of end-to-end performance for IEEE 802.15.4-based PANs, where default parameter settings of common communication protocols are analyzed and evaluated with regard to their impact on the network performance. Physical evaluations are carried out in a large testbed, addressing the important question of whether the default and allowed range settings defined for common communication protocols are efficient or whether alternative settings may yield a better performance. The second contribution of this thesis is the improvement of end-to-end performance for ZigBee wireless HA networks. ZigBee is an important standard for low-power wireless networks and the investigations carried out address the crucial lack of investigation the ZigBee HA performance evaluations through physical experiments and potential ways to improve the network performance based on these experiments. Eventually, this thesis focuses on the improvement of the congestion control (CC) mechanism applied by the Constrained Application Protocol (CoAP) used in IoT communications. For the handling of the possible congestion in the IoT produced by the plethora of the devices and/or link errors innate to low-power radio communications, the default CC mechanism it lacks an advanced CC algorithm. Given CoAP's high relevance for IoT communications, an advanced CC algorithm should be capable of adapting to these particularities of IoT communications. This thesis contributes to this topic with the design and optimization of the CoAP Advanced Congestion Control/Simple (CoCoA) protocol, an advanced CC mechanism for CoAP.The investigations of advanced CC mechanisms for CoAP involve extensive performance evaluations in simulated networks and physical experiments in real testbeds using different communication technologies.En les últimes dècades, les tecnologies sense fils s'han convertit en una part important de la nostra vida quotidiana. Una àmplia varietat de nous tipus de xarxes basades en tecnologies sense fils han sorgit, sovint reemplaçant solucions cablejades. En aquest desenvolupament, no només el nombre i els tipus de dispositius equipats amb transceptors sense fils han augmentat significativament, també la varietat de tecnologies sense fils ha crescut de manera considerable. D'altra banda, l'accés a Internet per als dispositius sense fils ha donat pas a una gran varietat de noves aplicacions privades, comercials i d'investigació. La comunitat científica i la indústria han fet grans esforços per desenvolupar normes, especificacions i protocols de comunicació per a xarxes de sensors sense fils (WSNs). L'Institut d'Enginyeria Elèctrica i Electrònica (IEEE) defineix l'estàndard 802.15.4 per a xarxes d'àrea personal (PAN). Amb la introducció d'una capa d'adaptació que possibilita les IEEE 802.15.4 xarxes compatibles amb IPv6, la interconnexió de milers de milions de dispositius restringits s'ha fet possible. La idea d'entreteixir la tecnologia d'Internet amb qualsevol tipus d'objectes intel·ligents, com els dispositius o sensors d'una WSN és coneguda com la Internet de les Coses (IoT). L'objectiu principal d'aquesta tesi és la millora del rendiment de les WSNs. Donada l'àmplia gamma d'escenaris d'aplicacions i solucions de xarxes proposats per a aquest tipus de xarxes, el desenvolupament i l'optimització dels protocols de comunicació per a dispositius de WSNs és una tasca difícil: les limitacions de capacitats dels dispositius restringits, escenaris d'aplicació específics que poden variar d'una xarxa a l'altra, i la integració de les WSNs a la IoT requereixen nous enfocaments per al disseny i avaluació de protocols de comunicació. Cal identificar mecanismes i configuracions de paràmetres de les piles de protocols de comunicació per a WSNs que són elementals per al rendiment de la xarxa, optimitzar-los, i complementar-los amb l'addició d'altres de nous. La primera contribució d'aquesta tesi és la millora del rendiment extrem a extrem per PANs basat en IEEE 802.15.4, on s'analitza la configuració de paràmetres que es fan servir per defecte en protocols de comunicació comuns i s'avalua el seu impacte en el rendiment de la xarxa. Avaluacions físiques en una xarxa de sensors permeten fer front a la important qüestió de si els valors estàndards dels paràmetres són eficients o si ajustant-los es pot proporcionar un millor rendiment. La segona contribució d'aquesta tesi és l'optimització del rendiment extrem a extrem de xarxes ZigBee domòtiques (HA) sense fils. ZigBee és un estàndard important per a WSNs. Els estudis duts a terme cobreixen la important falta d'investigació d'avaluacions de rendiment de xarxes HA de ZigBee mitjançant experiments físics i mostrant formes per millorar el rendiment de la xarxa en base d'aquests experiments. Finalment, aquesta tesi es centra en la millora del mecanisme bàsic de control de congestió (CC) aplicada pel Constrained Application Protocol (CoAP) utilitzat en les comunicacions de la IoT. És necessari un algoritme de CC avançat per al control de la possible congestió en la IoT produïda per la plètora de dispositius i/o errors d'enllaç naturals per a les comunicacions de ràdio de baixa potencia. Donada l'alta rellevància de CoAP per a les comunicacions en la IoT, un algoritme CC avançat ha de ser capaç d'adaptar-se a les particularitats de les comunicacions de la IoT. Aquesta tesi contribueix al problema amb el disseny i l'optimització Control de Congestió Avançat / Simple del CoAP (CoCoA), un mecanisme de CC avançat per CoAP. Les investigacions de mecanismes de CC avançats per CoAP impliquen avaluacions extenses en xarxes simulades i experiments físics en xarxes reals utilitzant diferents tecnologies de comunicacions
    • …
    corecore