1,456 research outputs found

    Adversarial robustness of deep learning enabled industry 4.0 prognostics

    Get PDF
    The advent of Industry 4.0 in automation and data exchange leads us toward a constant evolution in smart manufacturing environments, including extensive utilization of Internet-of-Things (IoT) and Deep Learning (DL). Specifically, the state-of-the-art Prognostics and Health Management (PHM) has shown great success in achieving a competitive edge in Industry 4.0 by reducing maintenance cost, downtime, and increasing productivity by making data-driven informed decisions. These state-of-the-art PHM systems employ IoT device data and DL algorithms to make informed decisions/predictions of Remaining Useful Life (RUL). Unfortunately, IoT sensors and DL algorithms, both are prone to cyber-attacks. For instance, deep learning algorithms are known for their susceptibility to adversarial examples. Such adversarial attacks have been extensively studied in the computer vision domain. However, it is surprising that their impact on the PHM domain is yet not explored. Thus, modern data-driven intelligent PHM systems pose a significant threat to safety- and cost-critical applications. Towards this, in this thesis, we propose a methodology to design adversarially robust PHM systems by analyzing the effect of different types of adversarial attacks on several DL enabled PHM models. More specifically, we craft adversarial attacks using Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM) and evaluate their impact on Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), Bi-directional LSTM, and Multi-layer perceptron (MLP) based PHM models using the proposed methodology. The obtained results using NASA's turbofan engine, and a well-known battery PHM dataset show that these systems are vulnerable to adversarial attacks and can cause a serious defect in the RUL prediction. We also analyze the impact of adversarial training using the proposed methodology to enhance the adversarial robustness of the PHM systems. The obtained results show that adversarial training is successful in significantly improvising the robustness of these PHM models.Includes bibliographical references (pages 80-98)

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    False image injection prevention using iChain

    Get PDF
    The advances in information and communication technology are consistently beneficial for the healthcare sector. A trend in the healthcare sector is the progressive shift in how data are acquired and the storage of such data in different facilities, such as in the cloud, due to the efficiency and effectiveness offered. Digital images related to healthcare are sensitive in nature and require maximum security and privacy. A malicious entity can tamper with such stored digital images to mislead healthcare personnel and the consequences of wrong diagnosis are harmful for both parties. A new type of cyber attack, a false image injection attack (FIIA) is introduced in this paper. Existing image tampering detection measures are unable to guarantee tamper-proof medical data in real time. Inspired by the effectiveness of emerging blockchain technology, a security framework, image chain (iChain) is proposed in this paper to ensure the security and privacy of the sensitive healthcare images. The practical challenges associated with the proposed framework and further research that is required are also highlighted

    A Novel Feature-Selection Algorithm in IoT Networks for Intrusion Detection

    Get PDF
    The Internet of Things (IoT) and network-enabled smart devices are crucial to the digitally interconnected society of the present day. However, the increased reliance on IoT devices increases their susceptibility to malicious activities within network traffic, posing significant challenges to cybersecurity. As a result, both system administrators and end users are negatively affected by these malevolent behaviours. Intrusion-detection systems (IDSs) are commonly deployed as a cyber attack defence mechanism to mitigate such risks. IDS plays a crucial role in identifying and preventing cyber hazards within IoT networks. However, the development of an efficient and rapid IDS system for the detection of cyber attacks remains a challenging area of research. Moreover, IDS datasets contain multiple features, so the implementation of feature selection (FS) is required to design an effective and timely IDS. The FS procedure seeks to eliminate irrelevant and redundant features from large IDS datasets, thereby improving the intrusion-detection system’s overall performance. In this paper, we propose a hybrid wrapper-based feature-selection algorithm that is based on the concepts of the Cellular Automata (CA) engine and Tabu Search (TS)-based aspiration criteria. We used a Random Forest (RF) ensemble learning classifier to evaluate the fitness of the selected features. The proposed algorithm, CAT-S, was tested on the TON_IoT dataset. The simulation results demonstrate that the proposed algorithm, CAT-S, enhances classification accuracy while simultaneously reducing the number of features and the false positive rate.publishedVersio
    • …
    corecore