12 research outputs found

    Konzept fĂĽr ein VR-System zur intuitiven Modellierung durch natĂĽrliche Interaktion

    Get PDF
    Aus der Einführung "Kreative Ideen sind die Grundlage für Unternehmen, um eigene Produkte an sich verändernde Marktbedingungen anzupassen, neue Möglichkeiten zu nutzen und auf dem Markt zu bestehen (Shalley et al. 2004). Organisationen versuchen deshalb, kreativitätsfördernde Arbeitsbedingungen zu schaffen, indem die Unternehmenskultur und Arbeitsumgebungen entsprechend gestaltet oder spezielle Werkzeuge zur Verfügung gestellt werden. Ein im Produktentwicklungsprozess häufig eingesetztes Werkzeug ist das parametrisch assoziative CAD-System (Computer-Aided Design). Die effiziente Bedienung einer umfangreichen WIMP (Window, Icon, Menu, Pointing)- basierten Software muss durch umfangreiche Schulungen erlernt und regelmäßig angewendet werden, um die Modellierfähigkeiten zu erhalten. Die zur Bedienung erforderliche kognitive Leistung führt häufig zur Beeinträchtigung der Kreativität eines Konstruktionsingenieurs (Chandrasegaran et al. 2013), v. a. bei wenig geübten Nutzergruppen. Am Übergang zwischen Konzeptphase und der frühen Entwurfsphase (Arbeitsabschnitt 5 der VDI 2221) wird deshalb vorwiegend mit Skizzen und noch nicht im parametrischen CAD-System gearbeitet (VDI 2223 2004). Für die Erstellung der Vorentwürfe wäre es im Sinne des „Frontloading“ jedoch wünschenswert, früh erste rechnergestützte Methoden zur Gestaltung einsetzen zu können. Durch den Einsatz von virtueller Realität (VR) eröffnet sich die Möglichkeit zur Entwicklung intuitiver Interaktionsmethoden, die eventuell neue Modellierstrategien ermöglichen. Diese erlauben dem Produktentwickler, natürlich mit den virtuellen Modellen umzugehen. Durch die im Vergleich zum parametrisch assoziativen CAD-System intuitive Bedienung würde die Kreativität bei der groben Gestaltung der Vorentwürfe weniger eingeschränkt. ...

    Two Hand Gesture Based 3D Navigation in Virtual Environments

    Get PDF
    Natural interaction is gaining popularity due to its simple, attractive, and realistic nature, which realizes direct Human Computer Interaction (HCI). In this paper, we presented a novel two hand gesture based interaction technique for 3 dimensional (3D) navigation in Virtual Environments (VEs). The system used computer vision techniques for the detection of hand gestures (colored thumbs) from real scene and performed different navigation (forward, backward, up, down, left, and right) tasks in the VE. The proposed technique also allow users to efficiently control speed during navigation. The proposed technique is implemented via a VE for experimental purposes. Forty (40) participants performed the experimental study. Experiments revealed that the proposed technique is feasible, easy to learn and use, having less cognitive load on users. Finally gesture recognition engines were used to assess the accuracy and performance of the proposed gestures. kNN achieved high accuracy rates (95.7%) as compared to SVM (95.3%). kNN also has high performance rates in terms of training time (3.16 secs) and prediction speed (6600 obs/sec) as compared to SVM with 6.40 secs and 2900 obs/sec

    Immersive manipulation of virtual objects through glove-based hand gesture interaction

    No full text
    Immersive visualisation is increasingly being used for comprehensive and rapid analysis of objects in 3D and object dynamic behaviour in 4D. Challenges are therefore presented to provide natural user interaction to enable effortless virtual object manipulation. Presented in this paper is the development and evaluation of an immersive human–computer interaction system based on stereoscopic viewing and natural hand gestures. For the development, it is based on the integration of a back-projection stereoscopic system for object and hand display, a hybrid inertial and ultrasonic tracking system to provide the absolute positions and orientations of the user’s head and hands, as well as a pair of high degrees-of-freedom data gloves to provide the relative positions and orientations of digit joints and tips on both hands. For the evaluation, it is based on a two-object scene with a virtual cube and a CT (computed tomography) volume created for demonstration of real-time immersive object manipulation. The system is shown to provide a correct user view of objects and hands in 3D with depth, as well as to enable a user to use a number of simple hand gestures to perform basic object manipulation tasks involving selection, release, translation, rotation and scaling. Also included in the evaluation are some quantitative tests of the system performance in terms of speed and latency

    Real-time Immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time

    Systematic literature review of hand gestures used in human computer interaction interfaces

    Get PDF
    Gestures, widely accepted as a humans' natural mode of interaction with their surroundings, have been considered for use in human-computer based interfaces since the early 1980s. They have been explored and implemented, with a range of success and maturity levels, in a variety of fields, facilitated by a multitude of technologies. Underpinning gesture theory however focuses on gestures performed simultaneously with speech, and majority of gesture based interfaces are supported by other modes of interaction. This article reports the results of a systematic review undertaken to identify characteristics of touchless/in-air hand gestures used in interaction interfaces. 148 articles were reviewed reporting on gesture-based interaction interfaces, identified through searching engineering and science databases (Engineering Village, Pro Quest, Science Direct, Scopus and Web of Science). The goal of the review was to map the field of gesture-based interfaces, investigate the patterns in gesture use, and identify common combinations of gestures for different combinations of applications and technologies. From the review, the community seems disparate with little evidence of building upon prior work and a fundamental framework of gesture-based interaction is not evident. However, the findings can help inform future developments and provide valuable information about the benefits and drawbacks of different approaches. It was further found that the nature and appropriateness of gestures used was not a primary factor in gesture elicitation when designing gesture based systems, and that ease of technology implementation often took precedence

    Designing Gunslinger: An Intermodal Large Display Interaction

    Get PDF
    In this thesis, we introduce Gunslinger, a mid-air barehand interaction technique using hand postures to trigger command modes and small finger and hand movements for events and parameter control. Unlike past work, Gunslinger uses an 'arms down' body stance where both sets of fingers are tracked in mid-air with thigh-mounted sensors. This stance not only makes input more subtle and less fatiguing, but two-handed input and the reduced physical space needed to perform gestures makes it more compatible with large display touch input. The design of Gunslinger follows guidelines for relaxed barehand input that ensure that users can interact comfortably in mid-air without sacrificing the expressiveness of the interaction technique. We also provide continuous feedback about the hand sensing and posture recognition to ensure that the user never has to switch his visual attention to understanding the system's responses. An implemented interaction vocabulary is described for map navigation which demonstrates how Gunslinger can be combined with touch input supported by a touch hand inference method leveraging the arms-down form factor. And we show how this can be achieved with an input vocabulary that is equivalent, coherent, and compatible across mid-air and touch input modalities. We conducted a four-part study to evaluate Gunslinger for resilience to Midas Touch, posture recognition quality with hand cursor feedback, distant pointing and clicking performance, and general usability for Gunslinger alone and when mixed with touch input. We present the results of the study which show that Gunslinger has little Midas touch, reliable posture detection, good pointing throughput, and acceptable usability, even compared to faster touch input. In addition, we implemented and evaluated a rollback mechanism in order to address a stability issue arising from the study. Finally, we summarize our findings and describe extended studies to work on in the future

    Real-time immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Development of Immersive and Interactive Virtual Reality Environment for Two-Player Table Tennis

    Get PDF
    Although the history of Virtual Reality (VR) is only about half a century old, all kinds of technologies in the VR field are developing rapidly. VR is a computer generated simulation that replaces or augments the real world by various media. In a VR environment, participants have a perception of “presence”, which can be described by the sense of immersion and intuitive interaction. One of the major VR applications is in the field of sports, in which a life-like sports environment is simulated, and the body actions of players can be tracked and represented by using VR tracking and visualisation technology. In the entertainment field, exergaming that merges video game with physical exercise activities by employing tracking or even 3D display technology can be considered as a small scale VR. For the research presented in this thesis, a novel realistic real-time table tennis game combining immersive, interactive and competitive features is developed. The implemented system integrates the InterSense tracking system, SwissRanger 3D camera and a three-wall rear projection stereoscopic screen. The Intersense tracking system is based on ultrasonic and inertia sensing techniques which provide fast and accurate 6-DOF (i.e. six degrees of freedom) tracking information of four trackers. Two trackers are placed on the two players’ heads to provide the players’ viewing positions. The other two trackers are held by players as the racquets. The SwissRanger 3D camera is mounted on top of the screen to capture the player’

    User-based gesture vocabulary for form creation during a product design process

    Get PDF
    There are inconsistencies between the nature of the conceptual design and the functionalities of the computational systems supporting it, which disrupt the designers’ process, focusing on technology rather than designers’ needs. A need for elicitation of hand gestures appropriate for the requirements of the conceptual design, rather than those arbitrarily chosen or focusing on ease of implementation was identified.The aim of this thesis is to identify natural and intuitive hand gestures for conceptual design, performed by designers (3rd, 4th year product design engineering students and recent graduates) working on their own, without instruction and without limitations imposed by the facilitating technology. This was done via a user centred study including 44 participants. 1785 gestures were collected. Gestures were explored as a sole mean for shape creation and manipulation in virtual 3D space. Gestures were identified, described in writing, sketched, coded based on the taxonomy used, categorised based on hand form and the path travelled and variants identified. Then they were statistically analysed to ascertain agreement rates between the participants, significance of the agreement and the likelihood of number of repetitions for each category occurring by chance. The most frequently used and statistically significant gestures formed the consensus set of vocabulary for conceptual design. The effect of the shape of the manipulated object on the gesture performed, and if the sequence of the gestures participants proposed was different from the established CAD solid modelling practices were also observed.Vocabulary was evaluated by non-designer participants, and the outcomes have shown that the majority of gestures were appropriate and easy to perform. Evaluation was performed theoretically and in the VR environment. Participants selected their preferred gestures for each activity, and a variant of the vocabulary for conceptual design was created as an outcome, that aims to ensure that extensive training is not required, extending the ability to design beyond trained designers only.There are inconsistencies between the nature of the conceptual design and the functionalities of the computational systems supporting it, which disrupt the designers’ process, focusing on technology rather than designers’ needs. A need for elicitation of hand gestures appropriate for the requirements of the conceptual design, rather than those arbitrarily chosen or focusing on ease of implementation was identified.The aim of this thesis is to identify natural and intuitive hand gestures for conceptual design, performed by designers (3rd, 4th year product design engineering students and recent graduates) working on their own, without instruction and without limitations imposed by the facilitating technology. This was done via a user centred study including 44 participants. 1785 gestures were collected. Gestures were explored as a sole mean for shape creation and manipulation in virtual 3D space. Gestures were identified, described in writing, sketched, coded based on the taxonomy used, categorised based on hand form and the path travelled and variants identified. Then they were statistically analysed to ascertain agreement rates between the participants, significance of the agreement and the likelihood of number of repetitions for each category occurring by chance. The most frequently used and statistically significant gestures formed the consensus set of vocabulary for conceptual design. The effect of the shape of the manipulated object on the gesture performed, and if the sequence of the gestures participants proposed was different from the established CAD solid modelling practices were also observed.Vocabulary was evaluated by non-designer participants, and the outcomes have shown that the majority of gestures were appropriate and easy to perform. Evaluation was performed theoretically and in the VR environment. Participants selected their preferred gestures for each activity, and a variant of the vocabulary for conceptual design was created as an outcome, that aims to ensure that extensive training is not required, extending the ability to design beyond trained designers only

    Development of immersive and interactive virtual reality environment for two-player table tennis

    Get PDF
    Although the history of Virtual Reality (VR) is only about half a century old, all kinds of technologies in the VR field are developing rapidly. VR is a computer generated simulation that replaces or augments the real world by various media. In a VR environment, participants have a perception of “presence”, which can be described by the sense of immersion and intuitive interaction. One of the major VR applications is in the field of sports, in which a life-like sports environment is simulated, and the body actions of players can be tracked and represented by using VR tracking and visualisation technology. In the entertainment field, exergaming that merges video game with physical exercise activities by employing tracking or even 3D display technology can be considered as a small scale VR. For the research presented in this thesis, a novel realistic real-time table tennis game combining immersive, interactive and competitive features is developed. The implemented system integrates the InterSense tracking system, SwissRanger 3D camera and a three-wall rear projection stereoscopic screen. The Intersense tracking system is based on ultrasonic and inertia sensing techniques which provide fast and accurate 6-DOF (i.e. six degrees of freedom) tracking information of four trackers. Two trackers are placed on the two players’ heads to provide the players’ viewing positions. The other two trackers are held by players as the racquets. The SwissRanger 3D camera is mounted on top of the screen to capture the player’sEThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore