330 research outputs found

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Femto-Photography: Capturing Light in Motion

    Get PDF
    We show a technique to capture ultrafast movies of light in motion and synthesize physically valid visualizations. The effective exposure time for each frame is under two picoseconds (ps). Capturing a 2D video with this time resolution is highly challenging, given the extermely low SNR associated with a picosecond exposure time, as well as the absence of 2D cameras that can provide such a shutter speed. We re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak tube, and we introduce reconstruction methods to visualize propagation of light pulses through macroscopic scenes. Capturing two-dimensional movies with picosecond resolution, we observe many interesting and complex light transport effects, including multibounce scattering, delayed mirror reflections, and subsurface scattering. We notice that the time instances recorded by the camera, i.e. “camera time” is different from the the time of the events as they happen locally at the scene location, i.e. world time. We introduce a notion of time warp between the two space time coordinate systems, and rewarp the space-time movie for a different perspective

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Femto-photography: capturing and visualizing the propagation of light

    Get PDF
    We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at an equivalent resolution of about one half trillion frames per second. Because cameras with this shutter speed do not exist, we re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak sensor, in which the time of arrival of light from the scene is coded in one of the sensor's spatial dimensions. We introduce reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes; at such fast resolution, we must consider the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light. We apply our femto-photography technique to visualizations of very different scenes, which allow us to observe the rich dynamics of time-resolved light transport effects, including scattering, specular reflections, diffuse interreflections, diffraction, caustics, and subsurface scattering. Our work has potential applications in artistic, educational, and scientific visualizations; industrial imaging to analyze material properties; and medical imaging to reconstruct subsurface elements. In addition, our time-resolved technique may motivate new forms of computational photography.MIT Media Lab ConsortiumLincoln LaboratoryMassachusetts Institute of Technology. Institute for Soldier NanotechnologiesAlfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award

    Ultra-fast Lensless Computational Imaging through 5D Frequency Analysis of Time-resolved Light Transport

    Get PDF
    Light transport has been analyzed extensively, in both the primal domain and the frequency domain. Frequency analyses often provide intuition regarding effects introduced by light propagation and interaction with optical elements; such analyses encourage optimal designs of computational cameras that efficiently capture tailored visual information. However, previous analyses have relied on instantaneous propagation of light, so that the measurement of the time dynamics of light–scene interaction, and any resulting information transfer, is precluded. In this paper, we relax the common assumption that the speed of light is infinite. We analyze free space light propagation in the frequency domain considering spatial, temporal, and angular light variation. Using this analysis, we derive analytic expressions for information transfer between these dimensions and show how this transfer can be exploited for designing a new lensless imaging system. With our frequency analysis, we also derive performance bounds for the proposed computational camera architecture and provide a mathematical framework that will also be useful for future ultra-fast computational imaging systems.MIT Media Lab ConsortiumNatural Sciences and Engineering Research Council of Canad

    Reconstruction of hidden 3D shapes using diffuse reflections

    Get PDF
    We analyze multi-bounce propagation of light in an unknown hidden volume and demonstrate that the reflected light contains sufficient information to recover the 3D structure of the hidden scene. We formulate the forward and inverse theory of secondary and tertiary scattering reflection using ideas from energy front propagation and tomography. We show that using careful choice of approximations, such as Fresnel approximation, greatly simplifies this problem and the inversion can be achieved via a backpropagation process. We provide a theoretical analysis of the invertibility, uniqueness and choices of space-time-angle dimensions using synthetic examples. We show that a 2D streak camera can be used to discover and reconstruct hidden geometry. Using a 1D high speed time of flight camera, we show that our method can be used recover 3D shapes of objects "around the corner"
    corecore