5,049 research outputs found

    Minimally invasive therapies for the brain using magnetic particles

    Get PDF
    Delivering a therapy with precision, while reducing off target effects is key to the success of any novel therapeutic intervention. This is of most relevance in the brain, where the preservation of surrounding healthy tissue is crucial in reducing the risk of cognitive impairment and improving patient prognosis. Our scientific understanding of the brain would also benefit from minimally invasive investigations of specific cell types so that they may be observed in their most natural physiological environment. Magnetic particles based techniques have the potential to deliver cellular precision in a minimally invasive manner. When inside the body, Magnetic particles can be actuated remotely using externally applied magnetic fields while their position can be detected non-invasively using MRI. The magnetic forces applied to the particles however, rapidly decline with increasing distance from the magnetic source. It is therefore critical to understand the amount of force needed for a particular application. The properties of the magnetic particle such as the size, shape and magnetic content, as well as the properties of the applied magnetic field, can then be tailored to that application. The aim of this thesis was to develop magnetic particle based techniques for precise manipulation of cells in the brain. Two different approaches were explored, utilising the versatile nature of magnetic actuation for two different applications. The first approach uses magnetic nanoparticles to mechanically stimulate a specific cell type. Magnetic particles conjugated with the antibody ACSA-1 would selectively bind to astrocytes to evoke the controlled release of ATP and induce a calcium flux which are used for communication with neighbouring cells. This approach allows for the investigation into the role of astrocytes in localised brain regions using a naturally occurring actuation process (mechanical force) without effecting their natural environment. The second approach uses a millimetre sized magnetic particle which can be navigated through the brain and ablate localised regions of cells using a magnetic resonance imaging system. The magnetic particle causes a distinct contrast in MRI images, allowing for precise detection of its location so that it may be iteratively guided along a pre-determined path to avoid eloquent brain regions. Once at the desired location, an alternating magnetic field can be applied causing the magnetic particle to heat and deliver controllable, well defined regions of cell death. The forces needed for cell stimulation are orders of magnitude less than the forces needed to guide particles through the brain. Chapters 4 and 5 use external magnets to deliver forces in the piconewton range. While stimulation was demonstrated in small animals, scaling up this technique to human proportions remains a challenge. Chapters 6 and 7 use a preclinical MRI system to generate forces in the millinewton range, allowing the particle to be moved several centimetres through the brain within a typical surgical timescale. When inside the scanner, an alternating magnetic field causes the particle to heat rapidly, enabling the potential for multiple ablations within a single surgery. For clinical translation of this technique, MRI scanners would require a dedicated propulsion gradient set and heating coil

    Graphenic materials for biomedical applications

    Get PDF
    Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017-2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.Web of Science912art. no. 175

    OPTIMAL CONTROL OF OBJECTS ON THE MICRO- AND NANO-SCALE BY ELECTROKINETIC AND ELECTROMAGNETIC MANIPULATION: FOR BIO-SAMPLE PREPARATION, QUANTUM INFORMATION DEVICES AND MAGNETIC DRUG DELIVERY

    Get PDF
    In this thesis I show achievements for precision feedback control of objects inside micro-fluidic systems and for magnetically guided ferrofluids. Essentially, this is about doing flow control, but flow control on the microscale, and further even to nanoscale accuracy, to precisely and robustly manipulate micro and nano-objects (i.e. cells and quantum dots). Target applications include methods to miniaturize the operations of a biological laboratory (lab-on-a-chip), i.e. presenting pathogens to on-chip sensing cells or extracting cells from messy bio-samples such as saliva, urine, or blood; as well as non-biological applications such as deterministically placing quantum dots on photonic crystals to make multi-dot quantum information systems. The particles are steered by creating an electrokinetic fluid flow that carries all the particles from where they are to where they should be at each time step. The control loop comprises sensing, computation, and actuation to steer particles along trajectories. Particle locations are identified in real-time by an optical system and transferred to a control algorithm that then determines the electrode voltages necessary to create a flow field to carry all the particles to their next desired locations. The process repeats at the next time instant. I address following aspects of this technology. First I explain control and vision algorithms for steering single and multiple particles, and show extensions of these algorithms for steering in three dimensional (3D) spaces. Then I show algorithms for calculating power minimum paths for steering multiple particles in actuation constrained environments. With this microfluidic system I steer biological cells and nano particles (quantum dots) to nano meter precision. In the last part of the thesis I develop and experimentally demonstrate two dimensional (2D) manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets, with a view towards enabling feedback control of magnetic drug delivery to reach deeper tumors in the long term. To this end, I developed and experimentally demonstrated an optimal control algorithm to effectively manipulate a single ferrofluid droplet by magnetic feedback control. This algorithm was explicitly designed to address the nonlinear and cross-coupled nature of dynamic magnetic actuation and to best exploit available electromagnetic forces for the applications of magnetic drug delivery

    Scalable strategies for tumour targeting of magnetic carriers and seeds

    Get PDF
    With the evolving landscape of medical oncology, focus has shifted away from nonspecific cytotoxic treatment strategies toward therapeutic paradigms more characteristic of targeted therapies. These therapies rely on delivery vehicles such as nano-carriers or micro robotic devices to boosts the concentration of therapeutics in a specific targeted site inside the body. The use of externally applied magnetic field is suggested to be a predominant approach for remote localisation of magnetically responsive carriers and devices to the target region that could not be otherwise reached. However, the fast decline of the magnetic fields and gradients with increasing distances from the source is posing a major challenge for its clinical application. The aim of this thesis was to investigate potential magnetic delivery strategies which can circumvent some of the typical limitations of this technique. Two different approaches were explored to this end. The first approach was to characterise the ability of a conventional permanent magnet on targeting individual nano-carriers and develop novel magnetic designs which improve the targeting efficiency. The second approach was evaluating the feasibility of a magnetic resonance imaging system to move a millimetre-sized magnetic particle within the body. Phantom and in vivo magnetic targeting experiments illustrated the significant increase in effective targeting depth when our novel magnetic design was used for targeting nano-carriers compared with conventional magnets. In the later part of the thesis, the proof of concept and characterisation experiments showed that a 3 mm magnetic particle can be moved in ex vivo brain tissue using a magnetic resonance imaging system using clinically relevant gradient strengths. The magnetic systems introduced in this thesis provide the potential to target nano-carriers and millimetre-sized thermoseeds to tumours located at deep regions of human body through vasculature and soft tissue respectively

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed

    Large scale Micro-Photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming

    Full text link
    Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 \mu m spatial resolution at video frame rate over a field of view of 3920x2602 \mu m^2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.Comment: 5 figures, 15 page

    Photoacoustic computed tomography guided microrobots for targeted navigation in intestines in vivo

    Get PDF
    Tremendous progress in synthetic micro/nanomotors has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT) guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules exhibit efficient propulsion in various biofluids once released. PACT has visualized the migration of micromotor capsules toward the targeted regions in real time in vivo. The integration of the developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo
    corecore