5 research outputs found

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    Atas das Oitavas Jornadas de Informática da Universidade de Évora

    Get PDF
    Atas das Oitavas Jornadas de Informática da Universidade de Évora realizadas em Março de 2018

    Tuberculosis diagnosis from pulmonary chest x-ray using deep learning.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Tuberculosis (TB) remains a life-threatening disease, and it is one of the leading causes of mortality in developing countries. This is due to poverty and inadequate medical resources. While treatment for TB is possible, it requires an accurate diagnosis first. Several screening tools are available, and the most reliable is Chest X-Ray (CXR), but the radiological expertise for accurately interpreting the CXR images is often lacking. Over the years, CXR has been manually examined; this process results in delayed diagnosis, is time-consuming, expensive, and is prone to misdiagnosis, which could further spread the disease among individuals. Consequently, an algorithm could increase diagnosis efficiency, improve performance, reduce the cost of manual screening and ultimately result in early/timely diagnosis. Several algorithms have been implemented to diagnose TB automatically. However, these algorithms are characterized by low accuracy and sensitivity leading to misdiagnosis. In recent years, Convolutional Neural Networks (CNN), a class of Deep Learning, has demonstrated tremendous success in object detection and image classification task. Hence, this thesis proposed an efficient Computer-Aided Diagnosis (CAD) system with high accuracy and sensitivity for TB detection and classification. The proposed model is based firstly on novel end-to-end CNN architecture, then a pre-trained Deep CNN model that is fine-tuned and employed as a features extractor from CXR. Finally, Ensemble Learning was explored to develop an Ensemble model for TB classification. The Ensemble model achieved a new stateof- the-art diagnosis accuracy of 97.44% with a 99.18% sensitivity, 96.21% specificity and 0.96% AUC. These results are comparable with state-of-the-art techniques and outperform existing TB classification models.Author's Publications listed on page iii

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis
    corecore