179 research outputs found

    Image-based photo hulls for fast and photo-realistic new view synthesis

    Get PDF
    We present an efficient image-based rendering algorithm that generates views of a scene's photo hull. The photo hull is the largest 3D shape that is photo-consistent with photographs taken of the scene from multiple viewpoints. Our algorithm, image-based photo hulls (IBPH), like the image-based visual hulls (IBVH) algorithm from Matusik et al. on which it is based, takes advantage of epipolar geometry to efficiently reconstruct the geometry and visibility of a scene. Our IBPH algorithm differs from IBVH in that it utilizes the color information of the images to identify scene geometry. These additional color constraints result in more accurately reconstructed geometry, which often projects to better synthesized virtual views of the scene. We demonstrate our algorithm running in a realtime 3D telepresence application using video data acquired from multiple viewpoints

    Exact View-dependent Visual-hulls

    Get PDF

    Range Segmentation Using Visibility Constraints

    Get PDF
    Visibility constraints can aid the segmentation of foreground objects observed with multiple range images. In our approach, points are defined as foreground if they can be determined to occlude some {em empty space} in the scene. We present an efficient algorithm to estimate foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we show how visibility constraints from other views can generate virtual background values at points with no valid depth in the primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments

    SilNet : Single- and Multi-View Reconstruction by Learning from Silhouettes

    Full text link
    The objective of this paper is 3D shape understanding from single and multiple images. To this end, we introduce a new deep-learning architecture and loss function, SilNet, that can handle multiple views in an order-agnostic manner. The architecture is fully convolutional, and for training we use a proxy task of silhouette prediction, rather than directly learning a mapping from 2D images to 3D shape as has been the target in most recent work. We demonstrate that with the SilNet architecture there is generalisation over the number of views -- for example, SilNet trained on 2 views can be used with 3 or 4 views at test-time; and performance improves with more views. We introduce two new synthetics datasets: a blobby object dataset useful for pre-training, and a challenging and realistic sculpture dataset; and demonstrate on these datasets that SilNet has indeed learnt 3D shape. Finally, we show that SilNet exceeds the state of the art on the ShapeNet benchmark dataset, and use SilNet to generate novel views of the sculpture dataset.Comment: BMVC 2017; Best Poste

    Inferring 3D Structure with a Statistical Image-Based Shape Model

    Get PDF
    We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images

    A flexible and versatile studio for synchronized multi-view video recording

    Get PDF
    In recent years, the convergence of Computer Vision and Computer Graphics has put forth new research areas that work on scene reconstruction from and analysis of multi-view video footage. In free-viewpoint video, for example, new views of a scene are generated from an arbitrary viewpoint in real-time from a set of real multi-view input video streams. The analysis of real-world scenes from multi-view video to extract motion information or reflection models is another field of research that greatly benefits from high-quality input data. Building a recording setup for multi-view video involves a great effort on the hardware as well as the software side. The amount of image data to be processed is huge, a decent lighting and camera setup is essential for a naturalistic scene appearance and robust background subtraction, and the computing infrastructure has to enable real-time processing of the recorded material. This paper describes the recording setup for multi-view video acquisition that enables the synchronized recording of dynamic scenes from multiple camera positions under controlled conditions. The requirements to the room and their implementation in the separate components of the studio are described in detail. The efficiency and flexibility of the room is demonstrated on the basis of the results that we obtain with a real-time 3D scene reconstruction system, a system for non-intrusive optical motion capture and a model-based free-viewpoint video system for human actors.

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions
    • …
    corecore