23,095 research outputs found

    Peak shaving through battery storage for low-voltage enterprises with peak demand pricing

    Get PDF
    The renewable energy transition has introduced new electricity tariff structures. With the increased penetration of photovoltaic and wind power systems, users are being charged more for their peak demand. Consequently, peak shaving has gained attention in recent years. In this paper, we investigated the potential of peak shaving through battery storage. The analyzed system comprises a battery, a load and the grid but no renewable energy sources. The study is based on 40 load profiles of low-voltage users, located in Belgium, for the period 1 January 2014, 00:00-31 December 2016, 23:45, at 15 min resolution, with peak demand pricing. For each user, we studied the peak load reduction achievable by batteries of varying energy capacities (kWh), ranging from 0.1 to 10 times the mean power (kW). The results show that for 75% of the users, the peak reduction stays below 44% when the battery capacity is 10 times the mean power. Furthermore, for 75% of the users the battery remains idle for at least 80% of the time; consequently, the battery could possibly provide other services as well if the peak occurrence is sufficiently predictable. From an economic perspective, peak shaving looks interesting for capacity invoiced end users in Belgium, under the current battery capex and electricity prices (without Time-of-Use (ToU) dependency)

    Hair today, gone tomorrow: the use of real, false and artificial hair as votive offerings

    Get PDF
    No abstract available

    Beyond Performance

    Get PDF
    corecore