3 research outputs found

    Evaluation of deep neural network architectures in the identification of bone fissures

    Get PDF
    Automated medical image processing, particularly of radiological images, can reduce the number of diagnostic errors, increase patient care and reduce medical costs. This paper seeks to evaluate the performance of three recent convolutional neural networks in the autonomous identification of fissures over two-dimensional radiological images. These architectures have been proposed as deep neural network types specially designed for image classification, which allows their integration with traditional image processing strategies for automatic analysis of medical images. In particular, we use three convolutional networks: ResNet (residual neural network), DenseNet (dense convolutional network), and NASNet (neural architecture search network) to learn information from a set of 200 images labeled half as fissured bones and half as seamless bones. All three networks are trained and adjusted under the same conditions, and their performance was evaluated with the same metrics. The final results consider not only the model's ability to predict the characteristics of an unknown image but also its internal complexity. The three neural models were optimized to reduce classification errors without producing network over-adjustment. In all three cases, generalization of behavior was observed, and the ability of the models to identify the images with fissures, however the expected performance was only achieved with the NASNet model

    Semi-Supervised Deep Learning for Multi-Tissue Segmentation from Multi-Contrast MRI

    Full text link
    Segmentation of thigh tissues (muscle, fat, inter-muscular adipose tissue (IMAT), bone, and bone marrow) from magnetic resonance imaging (MRI) scans is useful for clinical and research investigations in various conditions such as aging, diabetes mellitus, obesity, metabolic syndrome, and their associated comorbidities. Towards a fully automated, robust, and precise quantification of thigh tissues, herein we designed a novel semi-supervised segmentation algorithm based on deep network architectures. Built upon Tiramisu segmentation engine, our proposed deep networks use variational and specially designed targeted dropouts for faster and robust convergence, and utilize multi-contrast MRI scans as input data. In our experiments, we have used 150 scans from 50 distinct subjects from the Baltimore Longitudinal Study of Aging (BLSA). The proposed system made use of both labeled and unlabeled data with high efficacy for training, and outperformed the current state-of-the-art methods with dice scores of 97.52%, 94.61%, 80.14%, 95.93%, and 96.83% for muscle, fat, IMAT, bone, and bone marrow tissues, respectively. Our results indicate that the proposed system can be useful for clinical research studies where volumetric and distributional tissue quantification is pivotal and labeling is a significant issue. To the best of our knowledge, the proposed system is the first attempt at multi-tissue segmentation using a single end-to-end semi-supervised deep learning framework for multi-contrast thigh MRI scans.Comment: 20 pages, 9 figures, Journal of Signal Processing System

    Image-based Tissue Distribution Modeling for Skeletal Muscle Quality Characterization

    No full text
    corecore