17,481 research outputs found

    Image-based Text Classification using 2D Convolutional Neural Networks

    Get PDF
    We propose a new approach to text classification in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations of the visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional natural language processing algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-ofart accuracy results for a Chinese text classification task and achieved promising results for seven English text classification tasks. Furthermore, our approach outperformed the memory networks without match types when using out of vocabulary entities from Task 4 of the bAbI dialog dataset

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Speeding up Convolutional Neural Networks with Low Rank Expansions

    Full text link
    The focus of this paper is speeding up the evaluation of convolutional neural networks. While delivering impressive results across a range of computer vision and machine learning tasks, these networks are computationally demanding, limiting their deployability. Convolutional layers generally consume the bulk of the processing time, and so in this work we present two simple schemes for drastically speeding up these layers. This is achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain. Our methods are architecture agnostic, and can be easily applied to existing CPU and GPU convolutional frameworks for tuneable speedup performance. We demonstrate this with a real world network designed for scene text character recognition, showing a possible 2.5x speedup with no loss in accuracy, and 4.5x speedup with less than 1% drop in accuracy, still achieving state-of-the-art on standard benchmarks

    Do Convolutional Networks need to be Deep for Text Classification ?

    Get PDF
    We study in this work the importance of depth in convolutional models for text classification, either when character or word inputs are considered. We show on 5 standard text classification and sentiment analysis tasks that deep models indeed give better performances than shallow networks when the text input is represented as a sequence of characters. However, a simple shallow-and-wide network outperforms deep models such as DenseNet with word inputs. Our shallow word model further establishes new state-of-the-art performances on two datasets: Yelp Binary (95.9\%) and Yelp Full (64.9\%)
    • …
    corecore