196,108 research outputs found

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    Motion sequence analysis in the presence of figural cues

    Full text link
    Published in final edited form as: Neurocomputing. 2015 January 5, 147: 485–491The perception of 3-D structure in dynamic sequences is believed to be subserved primarily through the use of motion cues. However, real-world sequences contain many figural shape cues besides the dynamic ones. We hypothesize that if figural cues are perceptually significant during sequence analysis, then inconsistencies in these cues over time would lead to percepts of non-rigidity in sequences showing physically rigid objects in motion. We develop an experimental paradigm to test this hypothesis and present results with two patients with impairments in motion perception due to focal neurological damage, as well as two control subjects. Consistent with our hypothesis, the data suggest that figural cues strongly influence the perception of structure in motion sequences, even to the extent of inducing non-rigid percepts in sequences where motion information alone would yield rigid structures. Beyond helping to probe the issue of shape perception, our experimental paradigm might also serve as a possible perceptual assessment tool in a clinical setting.The authors wish to thank all observers who participated in the experiments reported here. This research and the preparation of this manuscript was supported by the National Institutes of Health RO1 NS064100 grant to LMV. (RO1 NS064100 - National Institutes of Health)Accepted manuscrip

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Automated Markerless Extraction of Walking People Using Deformable Contour Models

    No full text
    We develop a new automated markerless motion capture system for the analysis of walking people. We employ global evidence gathering techniques guided by biomechanical analysis to robustly extract articulated motion. This forms a basis for new deformable contour models, using local image cues to capture shape and motion at a more detailed level. We extend the greedy snake formulation to include temporal constraints and occlusion modelling, increasing the capability of this technique when dealing with cluttered and self-occluding extraction targets. This approach is evaluated on a large database of indoor and outdoor video data, demonstrating fast and autonomous motion capture for walking people

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis
    corecore