23,520 research outputs found

    Hypernetwork functional image representation

    Full text link
    Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods

    Sparse Image Representation with Epitomes

    Get PDF
    Sparse coding, which is the decomposition of a vector using only a few basis elements, is widely used in machine learning and image processing. The basis set, also called dictionary, is learned to adapt to specific data. This approach has proven to be very effective in many image processing tasks. Traditionally, the dictionary is an unstructured "flat" set of atoms. In this paper, we study structured dictionaries which are obtained from an epitome, or a set of epitomes. The epitome is itself a small image, and the atoms are all the patches of a chosen size inside this image. This considerably reduces the number of parameters to learn and provides sparse image decompositions with shiftinvariance properties. We propose a new formulation and an algorithm for learning the structured dictionaries associated with epitomes, and illustrate their use in image denoising tasks.Comment: Computer Vision and Pattern Recognition, Colorado Springs : United States (2011

    Anisotropic Mesh Adaptation for Image Representation

    Get PDF
    Triangular meshes have gained much interest in image representation and have been widely used in image processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme. Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The AMA methods have clear mathematical framework and provides flexibility for both image representation and image reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure

    Graph Regularized Tensor Sparse Coding for Image Representation

    Full text link
    Sparse coding (SC) is an unsupervised learning scheme that has received an increasing amount of interests in recent years. However, conventional SC vectorizes the input images, which destructs the intrinsic spatial structures of the images. In this paper, we propose a novel graph regularized tensor sparse coding (GTSC) for image representation. GTSC preserves the local proximity of elementary structures in the image by adopting the newly proposed tubal-tensor representation. Simultaneously, it considers the intrinsic geometric properties by imposing graph regularization that has been successfully applied to uncover the geometric distribution for the image data. Moreover, the returned sparse representations by GTSC have better physical explanations as the key operation (i.e., circular convolution) in the tubal-tensor model preserves the shifting invariance property. Experimental results on image clustering demonstrate the effectiveness of the proposed scheme

    Twisted Alexander Polynomials and Representation Shifts

    Full text link
    For any knot, the following are equivalent. (1) The infinite cyclic cover has uncountably many finite covers; (2) there exists a finite-image representation of the knot group for which the twisted Alexander polynomial vanishes; (3) the knot group admits a finite-image representation such that the image of the fundamental group of an incompressible Seifert surface is a proper subgroup of the image of the commutator subgroup of the knot group.Comment: 7 pages, no figure
    corecore