93 research outputs found

    A Learning-Based Steganalytic Method against LSB Matching Steganography

    Get PDF
    This paper considers the detection of spatial domain least significant bit (LSB) matching steganography in gray images. Natural images hold some inherent properties, such as histogram, dependence between neighboring pixels, and dependence among pixels that are not adjacent to each other. These properties are likely to be disturbed by LSB matching. Firstly, histogram will become smoother after LSB matching. Secondly, the two kinds of dependence will be weakened by the message embedding. Accordingly, three features, which are respectively based on image histogram, neighborhood degree histogram and run-length histogram, are extracted at first. Then, support vector machine is utilized to learn and discriminate the difference of features between cover and stego images. Experimental results prove that the proposed method possesses reliable detection ability and outperforms the two previous state-of-the-art methods. Further more, the conclusions are drawn by analyzing the individual performance of three features and their fused feature

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    A Survey of Data Mining Techniques for Steganalysis

    Get PDF

    El uso de bloques de imagen en el dominio espacial como una vĂ­a robusta de estenografĂ­a

    Get PDF
    Steganography is a way to convey secret communication, with rapid electronic communication and high demand of using the internet, steganography has become a wide field of research and discussion. In this paper a new approach for hiding information in cover image proposed in spatial domain, the proposed approach divides the host image into blocks of size (8x8) pixels and message bits are embeds into the pixels of a cover image. The 64-pixel values of each block converted to be represented in binary system and compared with corresponding secret data bits for finding the matching and hold 6-pixels. The search process performed by comparing each secret data bit (8-bits) with created binary plane at the cover image, if matching is found the last row of the created binary plane which is (LSB) is modified to indicate the location of the matched bits sequence “which is the secret data” and number of the row, if matching is not found in all 7th rows the secret sequence is copied in to the corresponding 8th row location.The payload of this technique is 6 pixels’ message (48-bits) in each block. In the experiments secret messages are randomly embedded into different images. The quality of the stego-image from which the original text message is extracted is not affected at all. For validation of the presented mechanism, the capacity, the circuit complexity, and the measurement of distortion against steganalysis is evaluated using the peak-signal-to-noise ratio (PSNR) are analyzed

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    PIRANHA: an engine for a methodology of detecting covert communication via image-based steganography

    Get PDF
    In current cutting-edge steganalysis research, model-building and machine learning has been utilized to detect steganography. However, these models are computationally and cognitively cumbersome, and are specifically and exactly targeted to attack one and only one type of steganography. The model built and utilized in this thesis has shown capability in detecting a class or family of steganography, while also demonstrating that it is viable to construct a minimalist model for steganalysis. The notion of detecting steganographic primitives or families is one that has not been discussed in literature, and would serve well as a first-pass steganographic detection methodology. The model built here serves this end well, and it must be kept in mind that the model presented is posited to work as a front-end broad-pass filter for some of the more computationally advanced and directed stganalytic algorithms currently in use. This thesis attempts to convey a view of steganography and steganalysis in a manner more utilitarian and immediately useful to everyday scenarios. This is vastly different from a good many publications that treat the topic as one relegated only to cloak-and-dagger information passing. The subsequent view of steganography as primarily a communications tool useable by petty information brokers and the like directs the text and helps ensure that the notion of steganography as a digital dead-drop box is abandoned in favor of a more grounded approach. As such, the model presented underperforms specialized models that have been presented in current literature, but also makes use of a large image sample space (747 images) as well as images that are contextually diverse and representative of those seen in wide use. In future applications by either law-enforcement or corporate officials, it is hoped that the model presented in this thesis can aid in rapid and targeted responses without causing undue strain upon an eventual human operator. As such, a design constraint that was utilized for this research favored a False Negative as opposed to a False Positive - this methodology helps to ensure that, in the event of an alert, it is worthwhile to apply a more directed attack against the flagged image

    Machine learning based digital image forensics and steganalysis

    Get PDF
    The security and trustworthiness of digital images have become crucial issues due to the simplicity of malicious processing. Therefore, the research on image steganalysis (determining if a given image has secret information hidden inside) and image forensics (determining the origin and authenticity of a given image and revealing the processing history the image has gone through) has become crucial to the digital society. In this dissertation, the steganalysis and forensics of digital images are treated as pattern classification problems so as to make advanced machine learning (ML) methods applicable. Three topics are covered: (1) architectural design of convolutional neural networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model classification, and (3) real-world tampering detection and localization. For covert communications, steganography is used to embed secret messages into images by altering pixel values slightly. Since advanced steganography alters the pixel values in the image regions that are hard to be detected, the traditional ML-based steganalytic methods heavily relied on sophisticated manual feature design have been pushed to the limit. To overcome this difficulty, in-depth studies are conducted and reported in this dissertation so as to move the success achieved by the CNNs in computer vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a proposed CNN architecture incorporating the domain knowledge of steganography and steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN is currently one of the best classifiers against steganography. Camera model classification from images aims at assigning a given image to its source capturing camera model based on the statistics of image pixel values. For this, two types of statistical features are designed to capture the traces left by in-camera image processing algorithms. The first is Markov transition probabilities modeling block-DCT coefficients for JPEG images; the second is based on histograms of local binary patterns obtained in both the spatial and wavelet domains. The designed features serve as the input to train support vector machines, which have the best classification performance at the time the features are proposed. The last part of this dissertation documents the solutions delivered by the author’s team to The First Image Forensics Challenge organized by the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. In the competition, all the fake images involved were doctored by popular image-editing software to simulate the real-world scenario of tampering detection (determine if a given image has been tampered or not) and localization (determine which pixels have been tampered). In Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector equipped with PatchMatch as a fast approximate nearest neighbor searching method were developed to identify duplicated regions within images. With these tools, the author’s team won the runner-up prizes in both the two phases of the Challenge

    A Method of Steganography – P Message With Q Coefficient (SPMQC)

    Get PDF
    In this paper, we are going to propose a method for Steganography- which is based on deceiving χ2 algorithm. Since the cover image coefficients and stego image coefficients histograms have significant differences for purposes of statistical properties, statistical analysis of χ2-test reveals the existence of hidden messages inside stego image. We are introducing an idea for hiding messages in the cover image. It causes that DCT (Discrete Cosine Transforms) coefficient histogram not to have remarkable modification before and after embedding message. As a result, identifying the hidden message inside an image is impossible for an eavesdropper through χ2 -test. In this paper, we are proposing a better method with developing this algorithm. In fact, the capacity and the security of embedding messages increase extremely.DOI:http://dx.doi.org/10.11591/ijece.v3i2.201
    • …
    corecore