3,436 research outputs found

    Model for Estimation of Bounds in Digital Coding of Seabed Images

    Get PDF
    This paper proposes the novel model for estimation of bounds in digital coding of images. Entropy coding of images is exploited to measure the useful information content of the data. The bit rate achieved by reversible compression using the rate-distortion theory approach takes into account the contribution of the observation noise and the intrinsic information of hypothetical noise-free image. Assuming the Laplacian probability density function of the quantizer input signal, SQNR gains are calculated for image predictive coding system with non-adaptive quantizer for white and correlated noise, respectively. The proposed model is evaluated on seabed images. However, model presented in this paper can be applied to any signal with Laplacian distribution

    Robust and scalable matching pursuits video transmission using the Bluetooth air interface standard

    Get PDF

    Robust image and video coding with pyramid vector quantisation

    Get PDF

    The Noise Reduction over Wireless Channel Using Vector Quantization Compression and Filtering

    Get PDF
    The transmission of compressed data over wireless channel conditions represents a big challenge. The idea of providing robust transmission gets a lot of attention in field of research. In this paper we study the effect of the noise over wireless channel. We use the model of Gilbert-Elliot to represent the channel. The parameters of the model are selected to represent three cases of channel. As data for transmission we use images in gray level size 512x512. To minimize bandwidth usage we compressed the image with vector quantization also in this compression technique we study the effect of the codebook in the robustness of transmission so we use different algorithms to generate the codebook for the vector quantization finally we study the restoration efficiency of received image using filtering and indices recovery technique

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel
    corecore