1,000 research outputs found

    Detrended fluctuation analysis for fractals and multifractals in higher dimensions

    Full text link
    One-dimensional detrended fluctuation analysis (1D DFA) and multifractal detrended fluctuation analysis (1D MF-DFA) are widely used in the scaling analysis of fractal and multifractal time series because of being accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MF-DFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces including fractional Brownian surfaces and multifractal surfaces. The two-dimensional MF-DFA is also adopted to analyze two images from nature and experiment and nice scaling laws are unraveled.Comment: 7 Revtex pages inluding 11 eps figure

    Numerical Methods of Multifractal Analysis in Information Communication Systems and Networks

    Get PDF
    In this chapter, the main principles of the theory of fractals and multifractals are stated. A singularity spectrum is introduced for the random telecommunication traffic, concepts of fractal dimensions and scaling functions, and methods used in their determination by means of Wavelet Transform Modulus Maxima (WTMM) are proposed. Algorithm development methods for estimating multifractal spectrum are presented. A method based on multifractal data analysis at network layer level by means of WTMM is proposed for the detection of traffic anomalies in computer and telecommunication networks. The chapter also introduces WTMM as the informative indicator to exploit the distinction of fractal dimen- sions on various parts of a given dataset. A novel approach based on the use of multifractal spectrum parameters is proposed for estimating queuing performance for the generalized multifractal traffic on the input of a buffering device. It is shown that the multifractal character of traffic has significant impact on queuing performance characteristics

    On Multifractal Structure in Non-Representational Art

    Get PDF
    Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, paintined by various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by a specific color (``blobs''), as well as patterns formed by the luminance gradient between adjacent colors (``edges''). It is found that the analysis method applied to ``blobs'' cannot distinguish between artists of the same movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8. The method can distinguish between different types of images, however, as demonstrated by studying a radically different type of art. The data suggests that the ``edge'' method can distinguish between artists in the same movement, and is proposed to represent a toy model of visual discrimination. A ``fractal reconstruction'' analysis technique is also applied to the images, in order to determine whether or not a specific signature can be extracted which might serve as a type of fingerprint for the movement. However, these results are vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps

    Parameters of the Magnetic Flux inside Coronal Holes

    Full text link
    Parameters of magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA images showed that the density of the net magnetic flux, BnetB_{{\rm net}}, does not correlate with the associated solar wind speeds, VxV_x. Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between BnetB_{{\rm net}} and VxV_x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of complexity of the magnetic field, the filling factor, f(r) f(r), was calculated as a function of spatial scales. In CHs, f(r)f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal structure and highly intermittent, burst-like energy release regime. The absence of necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic

    Multiscale Fractal Descriptors Applied to Nanoscale Images

    Full text link
    This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the}Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application
    corecore