234 research outputs found

    Robust face recognition using convolutional neural networks combined with Krawtchouk moments

    Get PDF
    Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises

    Accelerated and Improved Stabilization for High Order Moments of Racah Polynomials

    Get PDF
    Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials and used in various scientific fields for signal representation. They find applications in disciplines like image processing and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt) for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions. To compute the initial values, we employ the logarithmic gamma function along with a new formula. This combination enables us to compute the initial values efficiently for a wide range of DRP parameter values and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah polynomial parameters are zero ( a=0 , =0 ). This symmetry makes the Racah polynomials symmetric about the main diagonal, and we present a different algorithm for this specific scenario. We have demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms for various values of Racah polynomial parameters

    Mode Shape Description and Model Updating of Axisymmetric Structures Using Radial Tchebichef Moment Descriptors

    Get PDF
    A novel approach for mode shape feature extraction and model updating of axisymmetric structures based on radial Tchebichef moment (RTM) descriptors is proposed in this study. The mode shape features extracted by RTM descriptors can effectively compress the full-field modal vibration data and retain the most important information. The reconstruction of mode shapes using RTM descriptors can accurately describe the mode shapes, and the simulation shows that the RTM function is superior to Zernike moment function in terms of its mathematical properties and its shape reconstruction ability. In addition, the proposed modal correlation coefficient of the RTM amplitude can overcome the main disadvantage of using the modal assurance criterion (MAC), which has difficulty in identifying double or close modes of symmetric structures. Furthermore, the model updating of axisymmetric structures based on RTM descriptors appears to be more efficient and effective than the normal model updating method directly using modal vibration data, avoids manipulating large amounts of mode shape data, and speeds up the convergence of updating parameters. The RTM descriptors used in correlation analysis and model updating are demonstrated with a cover of an aeroengine rig. The frequency deviation between the test and the FE model was reduced from 17.13% to 1.23% for the first 13 modes via the model updating process. It verified the potential to industrial application with the proposed method

    On The Potential of Image Moments for Medical Diagnosis

    Get PDF
    Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring. The ever-increasing number of images produced has encouraged the introduction of automated methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional neural networks, many researchers have focused on this approach, considering it to be the only method for diagnosis since it can perform a direct classification of images. However, many diagnostic systems still rely on handcrafted features to improve interpretability and limit resource consumption. In this work, we focused our efforts on orthogonal moments, first by providing an overview and taxonomy of their macrocategories and then by analysing their classification performance on very different medical tasks represented by four public benchmark data sets. The results confirmed that convolutional neural networks achieved excellent performance on all tasks. Despite being composed of much fewer features than those extracted by the networks, orthogonal moments proved to be competitive with them, showing comparable and, in some cases, better performance. In addition, Cartesian and harmonic categories provided a very low standard deviation, proving their robustness in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal moments can lead to more robust and reliable diagnostic systems, considering the performance obtained and the low variation of the results. Finally, since they have been shown to be effective on both magnetic resonance and computed tomography images, they can be easily extended to other imaging techniques
    • …
    corecore