6 research outputs found

    Automatic generation of synthetic datasets for digital pathology image analysis

    Get PDF
    The project is inspired by an actual problem of timing and accessibility in the analysis of histological samples in the health-care system. In this project, I address the problem of synthetic histological image generation for the purpose of training Neural Networks for the segmentation of real histological images. The collection of real histological human-labeled samples is a very time consuming and expensive process and often is not representative of healthy samples, for the intrinsic nature of the medical analysis. The method I propose is based on the replication of the traditional specimen preparation technique in a virtual environment. The first step is the creation of a 3D virtual model of a region of the target human tissue. The model should represent all the key features of the tissue, and the richer it is the better will be the yielded result. The second step is to perform a sampling of the model through a virtual tomography process, which produces a first completely labeled image of the section. This image is then processed with different tools to achieve a histological-like aspect. The most significant aesthetical post-processing is given by the action of a style transfer neural network that transfers the typical histological visual texture on the synthetic image. This procedure is presented in detail for two specific models: one of pancreatic tissue and one of dermal tissue. The two resulting images compose a pair of images suitable for a supervised learning technique. The generation process is completely automatized and does not require the intervention of any human operator, hence it can be used to produce arbitrary large datasets. The synthetic images are inevitably less complex than the real samples and they offer an easier segmentation task to solve for the NN. However, the synthetic images are very abundant, and the training of a NN can take advantage of this feature, following the so-called curriculum learning strategy

    Chemical Bionics - a novel design approach using ion sensitive field effect transistors

    No full text
    In the late 1980s Carver Mead introduced Neuromorphic engineering in which various aspects of the neural systems of the body were modelled using VLSI1 circuits. As a result most bio-inspired systems to date concentrate on modelling the electrical behaviour of neural systems such as the eyes, ears and brain. The reality is however that biological systems rely on chemical as well as electrical principles in order to function. This thesis introduces chemical bionics in which the chemically-dependent physiology of specific cells in the body is implemented for the development of novel bio-inspired therapeutic devices. The glucose dependent pancreatic beta cell is shown to be one such cell, that is designed and fabricated to form the first silicon metabolic cell. By replicating the bursting behaviour of biological beta cells, which respond to changes in blood glucose, a bio-inspired prosthetic for glucose homeostasis of Type I diabetes is demonstrated. To compliment this, research to further develop the Ion Sensitive Field Effect Transistor (ISFET) on unmodified CMOS is also presented for use as a monolithic sensor for chemical bionic systems. Problems arising by using the native passivation of CMOS as a sensing surface are described and methods of compensation are presented. A model for the operation of the device in weak inversion is also proposed for exploitation of its physical primitives to make novel monolithic solutions. Functional implementations in various technologies is also detailed to allow future implementations chemical bionic circuits. Finally the ISFET integrate and fire neuron, which is the first of its kind, is presented to be used as a chemical based building block for many existing neuromorphic circuits. As an example of this a chemical imager is described for spatio-temporal monitoring of chemical species and an acid base discriminator for monitoring changes in concentration around a fixed threshold is also proposed

    Hedgehog interacting protein (Hhip) regulates both pancreatic and renal dysfunction in high fat diet-induced obese mouse model

    Full text link
    Hhip (Hedgehog interacting protein), un antagoniste de la voie de signalisation Hegehog (Hh) a était devouverte comme un antagoniste des 3 ligands Hh, soit Sonic (Shh), Indian (Ihh) et Desert (Dhh). La protéines Hhip régularise la fonction cellulaire autant par voie (Hh) canonique que non-canonique. Elle est formée de 700 acides aminés et est fortement exprimée dans les tissus riches en cellules endothéliales, comme les reins et le pancréas. Toutefois, son rôle dans le fonctionnement des cellules bêta matures soit en condition de bonne santé ou de maladie comme dans des conditions d’obésité provoquée par une diète riche en gras ainsi que son role dans les maladies chronique du rein et la dysfonction rénale. Les souris en déficience de Hhip (Hhip-/-) ont une malformation des ilots pancréatiques (une diminution de 45% des ilots et de 40% de la prolifération des cellules beta) et un problème pulmonaire qui cause la mort post-natale. L’objectif de notre étude initiale était de démontrer le role de Hhip dans le pancréas, en utilisant un KO corporel entier en réponse à une diète riche en gras (HFD) et la dysfonction des cellules beta in vivo et ex vivo sur des souris hétérozygotes pour Hhip (Hhip+/-) et des souris contrôles (Hhip +/+) Suite à une HFD, toutefois, les souris mâles et femelles HFD-Hhip+/+ ont développé une intolérance sévère au glucose (IPGTT) et cette intolérance a été améliorée chez les souris HFD-Hhip+/-. Associé a cette intolérance, les males HFD-Hhip+/- démontraient une hyperinsulinémie et leur taux d’insuline plasmatique (phase 1 et 2), contrairement aux souris males HFD-Hhip+/+, augmentait de façon significative. Dans les îlots de souris Hhip+/+, l’augmentation de Hhip induite par une HFD a été observée principalement dans les cellules bêta mais aucunement dans les cellules alpha. Sans varier le nombre total d’îlots et la quantité de cellules bêta, les souris mâles HFD-Hhip+/+ avaient un nombre supérieur de gros îlots dans lesquels le taux d’insuline était diminué. La structure de ces îlots était désorganisée, démontrant une évidente invasion des cellules alpha au coeur des îlots bêta, le stress oxidatif (8-OHdG et NADPH oxidase 2 (Nox 2)) est aussi augmentée. En revanche, chez les souris mâles HFD-Hhip+/-, il a été possible d’observer une augmentation du nombre de petits îlots, de la prolifération des cellules bêta, et aussi de la sécrétion d’insuline stimulée par le glucose (GSIS), une amélioration du stress oxidatif et un maintien de l’intégrité des îlots ont été démontré. In vitro, la protéine recombinante Hhip (rHhip) a accentué le stress oxidatif (Nox2 et l’activité de NADPH oxidase 2) et a causé une diminution du nombre de cellules bêta ; par contre, le siRNA-Hhip augmente le GSIS et abolit la stimulation de l’expression du gène Nox2 induite par le palmitate de sodium (PA)-BSA. Grace a ces observations, il est démontré que les genes Hhip pancréatiques inhibe la sécrétion d’insuline en altérant la structure des ilots et en favorisant l’expression du gene Nox2 dans les ilots en réponse à la dysfonction des cellules beta suite a une diète riche en gras HFD. Le diabète engendre des risques élevés de complication tel que des problèmes chroniques des reins caractérisés par une perte graduelle des fonctions rénales. Cette situation a été récemment reliée au taux élevé d’obésité. On a aussi démontré dans notre modèle de diabète gestationnel que l’augmentation de Hhip causait des irrégularités durant la néphrogénèse des rejetons [127]. Ensuite, nos données récentes démontrent que, chez les souris adultes, l’hyperglycémie a provoqué une forte expression du gene Hhip rénales causant ainsi l’apoptose des cellules épithéliales des glomérules et la transition endothéliale à mésenchymateuse (EndoMT) - liée à fibrose rénale [128]. Dans l’étude présente, on a établi que la surexpression de Hhip dans les cellules des tubules proximaux rénaux contribuait au développement initial des problèmes chroniques des reins suite a une HFD de 14 semaines. Un gain de poids significatif a été observé chez les souris du groupe HFD comparativement aux groupes ND. Les souris du groupe HFD ont développé une intolérance au glucose mais sans changement apparent à la sensibilité à l’insuline ni à l’hypertension (pression arterielle) même si ces souris mâles avaient des légers dépôts du gras périrénal. Les fonctions rénales telle que mesurées par le taux de filtration glomérulaire restaient normales dans tous les groupes révélant ainsi que ces deux facteurs (HFD et surexpression de Hhip) n’avaient aucune influence sur l’hyperfiltration rénale. Néanmoins, la morphologie rénale a révélé que les souris du groupe HFD présentaient une lésion infraclinique et des signes de vacuolisation tubulaire et des lésions par rapport aux souris ND. Cette pathologie de lésion tubulaire et de vacuolisation était plus prononcée chez les souris transgéniques (Hhip-Tg) que chez les souris non-Tg, ce qui favorisait l'apoptose des cellules tubulaires bénignes et un stress oxydatif accru. En conclusion, l'obésité provoquée par l'HFD a eu des effets néfastes sur la tolérance au glucose et de légères modifications morphologiques des reins, caractérisées par la présence d'une néphrose osmotique, une augmentation du stress oxydatif rénal et une apoptose pouvant être induites par une augmentation de la FABP4 rénale. Cela a été exacerbé par la surexpression de Hhip dans les tubules rénaux proximaux.Hedgehog interacting protein (Hhip), a signaling molecule in the Hedgehog Hh pathway, was originally discovered as a putative antagonist of all 3 secreted Hh ligands, i.e., Sonic (Shh), Indian (Ihh), and Desert (Dhh). Hhip regulates cell function via either canonical- or non-canonical Hh pathway. Hhip encodes a protein of 700 amino acids, and is abundantly expressed in vascular endothelial cell-rich tissues, including the pancreas, and kidneys. To date, less is known about Hhip’s expression pattern in mature islet cells, and its function under normal and/or disease conditions, such as diet induced-obesity, as well as its role in chronic kidney disease, and kidney dysfunction. Hhip null mice (Hhip-/-) display markedly impaired pancreatic islet formation (45% reduction of islet mass with a decrease of beta cell proliferation by 40%), however Hhip-/- mice die shortly after birth mainly due to lung defects. In our first study, we systemically studied the role of pancreatic Hhip expression by using a whole body knock out in response to 8 weeks high fat diet (HFD) insult, and HFD-mediated beta cell dysfunction in vivo, ex vivo and in vitro using heterozygous (Hhip+/-) vs. wild type (Hhip+/+) mice. Both HFD-fed Hhip+/+ male and female mice developed severe glucose intolerance (IPGTT), which was ameliorated in male and female HFD-Hhip+/- mice. Associated with this glucose intolerance, was hyperinsulinemia, which was observed only in HFD-fed male Hhip+/- mice. HFD-fed Hhip+/- mice had high levels of circulating plasma insulin in both insulin secretion phases compared to HFD fed Hhip+/+ mice. In the pancreas, Hhip expression was increased in the islets of HFD-Hhip+/+ mice, mainly co-localized in beta cells and none in alpha cells. While maintaining the total islet number, and beta cell mass, male HFD-Hhip+/+ mice had a higher number of larger islets, in which insulin content was reduced; islet architecture was disoriented, with evident invasion of alpha cells into the central core of beta cells; and an evident increase in oxidative stress markers (8-OHdG and NADPH oxidase 2 (Nox 2)). In contrast, male HFD-Hhip+/- mice had a higher number of smaller islets, with increased beta cell proliferation, pronounced glucose stimulated insulin secretion (GSIS), ameliorated oxidative stress and preserved islet integrity. In vitro, recombinant Hhip (rHhip) dose-dependently increased oxidative stress (Nox2 and NADPH activity), and decreased the number of insulin-positive beta cells, while siRNA-Hhip enhanced GSIS, and abolished the stimulation of sodium palmitate (PA)-BSA on Nox2 gene expression. We believe our data highlights a novel finding as to how pancreatic Hhip gene inhibits insulin secretion, by altering islet integrity, and promoting Nox2 gene expression in beta cells in response to HFD-mediated beta cell dysfunction. Diabetes presents high risk factors associated with complications such as chronic kidney disease (CKD) characterized by a gradual loss in kidney function. The increased incidence of diabetic related kidney complications has been recently correlated with increase rate of obesity. We recently established that impaired nephrogenesis in kidneys of offsprings of our murine model of maternal diabetes was associated with upregulation of Hhip gene expression [127]. Subsequently, our recent data also shows that hyperglycemia induced increased renal Hhip gene expression in adult murine kidneys leading to apoptosis of glomerular epithelial cells and endothelial to mesenchymal transition (Endo-MT) - related renal fibrosis [128]. In this current study, we demonstrated how Hhip overexpression in renal proximal tubular cells, contributes to early development of chronic kidney disease after 14 weeks of HFD. Mice in HFD-fed groups showed significantly greater weight gain as compared to mice in ND fed groups. IPGTT revealed that HFD fed mice also developed glucose intolerance, with no apparent changes in insulin sensitivity. HFD did not impact hypertension, even though we had a modest trend of increase in perirenal fat deposit in the HFD fed subgroups. Renal function as measured by the glomerular filtration rate was normal in all four subgroups, indicating that neither HFD, nor Hhip overexpression promoted renal hyperfiltration. Nonetheless, renal morphology revealed HFD kidneys had subclinical injury, presented signs of tubular vacuolization and damage compared to ND fed mice. This pathology of tubular damage and vacuolization was more pronounced in HFD-fed transgenic (Hhip-Tg) mice compared to non-Tg mice, and this promoted mild tubular cell apoptosis and enhanced oxidative stress. In conclusion, HFD feeding-induced obesity led to detrimental effects on glucose toleranc,e and mild morphological changes in kidneys, characterized by the presence of osmotic nephrosis, increased renal oxidative stress, and apoptosis which might be mediated by an increase in renal FABP4. This was exacerbated by the over-expression of Hhip in the renal proximal tubules

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Image segmentation to evaluate islets of langherans

    No full text
    This contribution deals with an unsupervised system to process digital photomicrographs in order to locate and analyze islets of Langherans in human pancreases. The experiment has been conducted on real data and, though we are still going to complete the evaluation of the whole method, we expect to define a set of proper features (e.g. area, perimeter, fractal dimension, shape complexity, texture and entropy) useful for a fast and reliable counting of healthy cells. In particular, this research aims to measure the advisability of a possible implantation in patients affected by type I diabetes mellitu

    Etude du rôle des lipases musculaires dans la régulation du métabolisme des lipides et de la sensibilité à l'insuline

    Get PDF
    Mon travail de thèse à été axé sur l'étude le la lipolyse musculaire. Nous avons notamment étudié son impact sur la sensibilité à l'insuline ainsi que sur la régulation du métabolisme lipidique et oxydatif. Nous avons pu montrer que l'expression musculaire de l'adipose triglycéride lipase (ATGL), enzyme limitante de la lipolyse, était corrélée négativement avec la sensibilité à l'insuline dans une cohorte de personnes de poids normal, obèses et diabétiques. Afin d'identifier l'impact de cette augmentation d'expression de l'ATGL musculaire nous avons surexprimé la protéine dans des myocytes primaires humains. La signalisation ainsi que la sensibilité à l'insuline étaient diminuées dans ces cellules. Nous avons pu établir que ceci passait par une augmentation de la production de diacylglycérols (DAG) et l'activation de protéines kinases C (PKC) connus pour phosphoryler négativement l'insulin receptor substrate 1. Pour compléter ce travail nous avons étudié dans un modèle murin soumis à un régime riche en graisse, s'il existait une détérioration de l'expression des lipases associée à la perte de sensibilité à l'insuline. Nous avons ainsi pu montrer que le régime hyper lipidique entrainait un déséquilibre de la lipolyse musculaire avec une augmentation de l'expression de comparative gene identification 58 (CGI-58) (co-activateur de l'ATGL) et une baisse de la phosphorylation activatrice de la lipase hormono-sensible en sérine 660. Ceci était associé à une augmentation de l'activation des PKC-? et -e et à une accumulation de DAG. En parallèle, nous avons étudié la fonction de CGI-58 dans le muscle squelettique. Pour cela nous avons réalisé des expériences de surexpression ou d'extinction de CGI-58 dans des myocytes. Nous avons montré que, comme dans l'adipocyte, CGI-58 était un co-activateur de l'ATGL dans le muscle squelettique. De façon intéressante, nous avons également observé que la diminution de la lipolyse, résultant de l'extinction de CGI-58, passait par une diminution de l'oxydation des lipides et une hausse de celle des glucides. Ces effets pourraient s'expliquer par la baisse de l'expression de la pyruvate dehydrogenase kinase 4. Cette baisse d'expression est du dans notre modèle à une diminution de l'activation de peroxysome proliferator-activated receptor bêta/d par les acides gras de la lipolyse. Ces travaux ont montré pour la première fois un lien causal entre une dérégulation de la lipolyse musculaire et l'insulino-résistance. Nos données participent également à l'élargissement des connaissances existantes sur le contrôle physiologique et moléculaire de la lipolyse musculaire.During my PhD thesis, we studied the pathophysiological link between skeletal muscle lipolysis and insulin-resistance. We also evaluated the role of skeletal muscle lipolysis in the regulation of lipid and oxidative metabolism. We have shown that the expression of adipose triglyceride lipase (ATGL) in skeletal muscle, a limiting enzyme of lipolysis, was negatively correlated with insulin sensitivity in a cohort of lean, obese and type 2 diabetic subjects. To study the effect of ATGL up-regulation on insulin sensitivity, we next over-expressed ATGL in human primary myocytes. Insulin-sensitivity and signaling were both reduced. We also showed that these effects were dependant on diacylglycerol (DAG) production and protein kinase C (PKC) activation. PKC are known to inhibit insulin receptor substrate 1 by serine phosphorylation. We next studied, in a murine mouse model, the effect of high fat feeding on insulin resistance and skeletal muscle lipase expression. We have shown an increase of comparative gene identification 58 (CGI-58) expression (a co-activator of ATGL) and a decrease of hormone sensitive lipase phosphorylation on its activating residue at serine 660. This deregulation of lipolysis was associated with a strong increase of total DAG concentration and PKC ? and e membrane translocationin skeletal muscle. In parallel to this work, we studied the metabolic role of CGI-58 in skeletal muscle through overexpression and knockdown studies in primary human myocytes. We have shown that CGI-58 is a co-activator of ATGL in skeletal muscle. Moreover we observed during the knockdown of CGI-58 a decrease of lipid oxidation and an increase of glucose oxidation. These effects were partly explained by the down-regulation of pyruvate dehydrogenase kinase 4 expression. These effects were mostly mediated by a decrease of peroxysome proliferator-activated receptor beta/d activation by fatty acid from lipolysis. Finally our work shows for the first time a pathophysiological link between lipases deregulation and insulin-resistance in skeletal muscle. These data also significantly contribute to a better understanding of the molecular and physiological regulation of skeletal muscle lipolysis
    corecore