10,583 research outputs found

    Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features

    Get PDF
    Abstract: Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low voxel statistics in regions of interest, increasing the sample size would improve their robustness in clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At 2× SR, the proposed model achieved better perceptual quality with less blurring than the other considered state-of-the-art SR methods, while producing comparable results at 4× SR. We also evaluated the robustness of our model’s radiomic feature in terms of quantization on a different lung cancer CT dataset using Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-based analysis were the most robust features extracted on the GAN-super-resolved images. These achievements pave the way for the application of GAN-based image Super-Resolution techniques for studies of radiomics for robust biomarker discovery

    Deep Video Generation, Prediction and Completion of Human Action Sequences

    Full text link
    Current deep learning results on video generation are limited while there are only a few first results on video prediction and no relevant significant results on video completion. This is due to the severe ill-posedness inherent in these three problems. In this paper, we focus on human action videos, and propose a general, two-stage deep framework to generate human action videos with no constraints or arbitrary number of constraints, which uniformly address the three problems: video generation given no input frames, video prediction given the first few frames, and video completion given the first and last frames. To make the problem tractable, in the first stage we train a deep generative model that generates a human pose sequence from random noise. In the second stage, a skeleton-to-image network is trained, which is used to generate a human action video given the complete human pose sequence generated in the first stage. By introducing the two-stage strategy, we sidestep the original ill-posed problems while producing for the first time high-quality video generation/prediction/completion results of much longer duration. We present quantitative and qualitative evaluation to show that our two-stage approach outperforms state-of-the-art methods in video generation, prediction and video completion. Our video result demonstration can be viewed at https://iamacewhite.github.io/supp/index.htmlComment: Under review for CVPR 2018. Haoye and Chunyan have equal contributio

    Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning

    Full text link
    Recent advances in Generative Adversarial Learning allow for new modalities of image super-resolution by learning low to high resolution mappings. In this paper we present our work using Generative Adversarial Networks (GANs) with applications to overhead and satellite imagery. We have experimented with several state-of-the-art architectures. We propose a GAN-based architecture using densely connected convolutional neural networks (DenseNets) to be able to super-resolve overhead imagery with a factor of up to 8x. We have also investigated resolution limits of these networks. We report results on several publicly available datasets, including SpaceNet data and IARPA Multi-View Stereo Challenge, and compare performance with other state-of-the-art architectures.Comment: 9 pages, 9 figures, WACV 2018 submissio
    • …
    corecore