336,995 research outputs found

    Explainable Image Quality Assessments in Teledermatological Photography

    Full text link
    Image quality is a crucial factor in the effectiveness and efficiency of teledermatological consultations. However, up to 50% of images sent by patients have quality issues, thus increasing the time to diagnosis and treatment. An automated, easily deployable, explainable method for assessing image quality is necessary to improve the current teledermatological consultation flow. We introduce ImageQX, a convolutional neural network for image quality assessment with a learning mechanism for identifying the most common poor image quality explanations: bad framing, bad lighting, blur, low resolution, and distance issues. ImageQX was trained on 26,635 photographs and validated on 9,874 photographs, each annotated with image quality labels and poor image quality explanations by up to 12 board-certified dermatologists. The photographic images were taken between 2017 and 2019 using a mobile skin disease tracking application accessible worldwide. Our method achieves expert-level performance for both image quality assessment and poor image quality explanation. For image quality assessment, ImageQX obtains a macro F1-score of 0.73 +- 0.01, which places it within standard deviation of the pairwise inter-rater F1-score of 0.77 +- 0.07. For poor image quality explanations, our method obtains F1-scores of between 0.37 +- 0.01 and 0.70 +- 0.01, similar to the inter-rater pairwise F1-score of between 0.24 +- 0.15 and 0.83 +- 0.06. Moreover, with a size of only 15 MB, ImageQX is easily deployable on mobile devices. With an image quality detection performance similar to that of dermatologists, incorporating ImageQX into the teledermatology flow can enable a better, faster flow for remote consultations.Comment: Accepted at the Telemedicine and eHealth Journa

    Perceptual image attribute scales derived from overall image quality assessments

    Get PDF
    Psychophysical scaling is commonly based on the assumption that the overall quality of images is based on the assessment of individual attributes which the observer is able to recognise and separate, i.e. sharpness, contrast, etc. However, the assessment of individual attributes is a subject of debate, since they are unlikely to be independent from each other. This paper presents an experiment that was carried to derive individual perceptual attribute interval scales from overall image quality assessments, therefore examine the weight of each individual attribute to the overall perceived quality. A psychophysical experiment was taken by fourteen observers. Thirty two original images were manipulated by adjusting three physical parameters that altered image blur, noise and contrast. The data were then arranged by permutation, where ratings for each individual attribute were averaged to examine the variation of ratings in other attributes. The results confirmed that one JND of added noise and one JND of added blurring reduced image quality more than did one JND in contrast change. Furthermore, they indicated that the range of distortion that was introduced by blurring covered the entire image quality scale but the ranges of added noise and contrast adjustments were too small for investigating the consequences in the full range of image quality. There were several interesting tradeoffs between noise,blur and changes in contrast. Further work on the effect of (test) scene content was carried out to objectively reveal which types of scenes were significantly affected by changes in each attribute

    Towards a Semantic Perceptual Image Metric

    Full text link
    We present a full reference, perceptual image metric based on VGG-16, an artificial neural network trained on object classification. We fit the metric to a new database based on 140k unique images annotated with ground truth by human raters who received minimal instruction. The resulting metric shows competitive performance on TID 2013, a database widely used to assess image quality assessments methods. More interestingly, it shows strong responses to objects potentially carrying semantic relevance such as faces and text, which we demonstrate using a visualization technique and ablation experiments. In effect, the metric appears to model a higher influence of semantic context on judgments, which we observe particularly in untrained raters. As the vast majority of users of image processing systems are unfamiliar with Image Quality Assessment (IQA) tasks, these findings may have significant impact on real-world applications of perceptual metrics

    DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

    Full text link
    Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations - small sensor size, compact lenses and the lack of specific hardware, - impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-quality images. We propose learning the translation function using a residual convolutional neural network that improves both color rendition and image sharpness. Since the standard mean squared loss is not well suited for measuring perceptual image quality, we introduce a composite perceptual error function that combines content, color and texture losses. The first two losses are defined analytically, while the texture loss is learned in an adversarial fashion. We also present DPED, a large-scale dataset that consists of real photos captured from three different phones and one high-end reflex camera. Our quantitative and qualitative assessments reveal that the enhanced image quality is comparable to that of DSLR-taken photos, while the methodology is generalized to any type of digital camera

    Quantifying image distortion based on Gabor filter bank and multiple regression analysis

    Get PDF
    Image quality assessment is indispensable for image-based applications. The approaches towards image quality assessment fall into two main categories: subjective and objective methods. Subjective assessment has been widely used. However, careful subjective assessments are experimentally difficult and lengthy, and the results obtained may vary depending on the test conditions. On the other hand, objective image quality assessment would not only alleviate the difficulties described above but would also help to expand the application field. Therefore, several works have been developed for quantifying the distortion presented on a image achieving goodness of fit between subjective and objective scores up to 92%. Nevertheless, current methodologies are designed assuming that the nature of the distortion is known. Generally, this is a limiting assumption for practical applications, since in a majority of cases the distortions in the image are unknown. Therefore, we believe that the current methods of image quality assessment should be adapted in order to identify and quantify the distortion of images at the same time. That combination can improve processes such as enhancement, restoration, compression, transmission, among others. We present an approach based on the power of the experimental design and the joint localization of the Gabor filters for studying the influence of the spatial/frequencies on image quality assessment. Therefore, we achieve a correct identification and quantification of the distortion affecting images. This method provides accurate scores and differentiability between distortions

    Quality Assessments of Various Digital Image Fusion Techniques

    Get PDF
    Image Fusion is a process of combining the relevant information from a set of images into a single image, where the resultant fused image will be more informative and complete than any of the input images. The goal of image fusion (IF) is to integrate complementary multisensory, multitemporal and/or multiview information into one new image containing information the quality of which cannot be achieved otherwise. It has been found that the standard fusion methods perform well spatially but usually introduce spectral distortion, Image fusion techniques can improve the quality and increase the application of these data. In this Project we use various image fusion techniques using discrete wavelet transform and discrete cosine transform and it is proposed to analyze the fused image, after that by using various quality assessment factors it is proposed to analyze subject images and draw a conclusion that from which transformation technique we can find the better results. In this project several applications and comparisons between different fusion schemes and rules are addressed

    A site-specific standard for comparing dynamic solar ultraviolet protection characteristics of established tree canopies

    Get PDF
    A standardised procedure for making fair and comparable assessments of the ultraviolet protection of an established tree canopy that takes into account canopy movement and the changing position of the sun is presented for use by government, planning, and environmental health authorities. The technique utilises video image capture and replaces the need for measurement by ultraviolet radiometers for surveying shade quality characteristics of trees growing in public parks, playgrounds and urban settings. The technique improves upon tree shade assessments that may be based upon single measurements of the ultraviolet irradiance observed from a fixed point of view. The presented technique demonstrates how intelligent shade audits can be conducted without the need for specialist equipment, enabling the calculation of the Shade Protection Index (SPI) and Ultraviolet Protection Factor (UPF) for any discreet time interval and over a full calendar year
    • …
    corecore