1,618 research outputs found

    An electromagnetic imaging system for metallic object detection and classification

    Get PDF
    PhD ThesisElectromagnetic imaging currently plays a vital role in various disciplines, from engineering to medical applications and is based upon the characteristics of electromagnetic fields and their interaction with the properties of materials. The detection and characterisation of metallic objects which pose a threat to safety is of great interest in relation to public and homeland security worldwide. Inspections are conducted under the prerequisite that is divested of all metallic objects. These inspection conditions are problematic in terms of the disruption of the movement of people and produce a soft target for terrorist attack. Thus, there is a need for a new generation of detection systems and information technologies which can provide an enhanced characterisation and discrimination capabilities. This thesis proposes an automatic metallic object detection and classification system. Two related topics have been addressed: to design and implement a new metallic object detection system; and to develop an appropriate signal processing algorithm to classify the targeted signatures. The new detection system uses an array of sensors in conjunction with pulsed excitation. The contributions of this research can be summarised as follows: (1) investigating the possibility of using magneto-resistance sensors for metallic object detection; (2) evaluating the proposed system by generating a database consisting of 12 real handguns with more than 20 objects used in daily life; (3) extracted features from the system outcomes using four feature categories referring to the objects’ shape, material composition, time-frequency signal analysis and transient pulse response; and (4) applying two classification methods to classify the objects into threats and non-threats, giving a successful classification rate of more than 92% using the feature combination and classification framework of the new system. The study concludes that novel magnetic field imaging system and their signal outputs can be used to detect, identify and classify metallic objects. In comparison with conventional induction-based walk-through metal detectors, the magneto-resistance sensor array-based system shows great potential for object identification and discrimination. This novel system design and signal processing achievement may be able to produce significant improvements in automatic threat object detection and classification applications.Iraqi Cultural AttachĂ©, Londo

    Anti- Forensics: The Tampering of Media

    Get PDF
    In the context of forensic investigations, the traditional understanding of evidence is changing where nowadays most prosecutors, lawyers and judges heavily rely on multimedia signs. This modern shift has allowed the law enforcement to better reconstruct the crime scenes or reveal the truth of any critical event.In this paper we shed the light on the role of video, audio and photos as forensic evidences presenting the possibility of their tampering by various easy-to-use, available anti-forensics softwares. We proved that along with the forensic analysis, digital processing, enhancement and authentication via forgery detection algorithms to testify the integrity of the content and the respective source of each, differentiating between an original and altered evidence is now feasible. These operations assist the court to attain higher degree of intelligibility of the multimedia data handled and assert the information retrieved from each that support the success of the investigation process

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Satellite Image Fusion in Various Domains

    Full text link
    In order to find out the fusion algorithm which is best suited for the panchromatic and multispectral images, fusion algorithms, such as PCA and wavelet algorithms have been employed and analyzed. In this paper, performance evaluation criteria are also used for quantitative assessment of the fusion performance. The spectral quality of fused images is evaluated by the ERGAS and Q4. The analysis indicates that the DWT fusion scheme has the best definition as well as spectral fidelity, and has better performance with regard to the high textural information absorption. Therefore, as the study area is concerned, it is most suited for the panchromatic and multispectral image fusion. an image fusion algorithm based on wavelet transform is proposed for Multispectral and panchromatic satellite image by using fusion in spatial and transform domains. In the proposed scheme, the images to be processed are decomposed into sub-images with the same resolution at same levels and different resolution at different levels and then the information fusion is performed using high-frequency sub-images under the Multi-resolution image fusion scheme based on wavelets produces better fused image than that by the MS or WA schemes

    Time and Encoding Effects in the Concealed Knowledge Test

    Get PDF
    Although the traditional “lie detector” test is used frequently in forensic contexts, it has (like most test of deception) some limitations. The concealed knowledge test (CKT) focuses on participants’ recognition of privileged knowledge rather than lying per-se and has been studied extensively using a variety of measures. A “guilty” suspect’s interaction with and memory of crimescene items may vary. Furthermore, memory for crimescene items may diminish over time. The interaction of encoding quality and test delay on CKT efficiency has been previously implied, but not yet demonstrated. We used a response-time based CKT to detect concealed knowledge from shallow and deep study procedures after 10-min, 24-h, and 1-week delays. Results show that more elaborately encoded information afforded higher detection accuracy than poorly encoded items. Although classification accuracy following deep study was unaffected by delay, detection of poorly elaborated information was initially high, but compromised after 1 week. Thus, choosing optimal test items requires considering both test delay and initial encoding level

    Importance of Edge Detection in Modern Era

    Get PDF
    We know that the edge is a fundamental thing of any object. There is no object in this world without edge. Sometimes we can say edge is also known as a corner of an object. We can create any shape of object with the help of the edges. If we look into technically, an edge may be defined as a set of connected pixels that forms a boundary between two disarrange regions. Edge detection is a method of segmenting an image into regions of conclusion. That’s why we can say that the edge detection is also known as corner detection or shape detection. If edge is detected shape is also detected. Edge detection or corner detection plays very important role in digital image processing and practical aspects of our life. In this report, we studied various edge detection techniques as Robert, Sobel and Canny operators

    Edge Detection Technology using Image processing in Matlab

    Get PDF
    An edge may be defined as a set of connected pixels that forms a boundary between two disarrange regions. Edge detection is a method of segmenting an image into regions of conclusion. Edge detection plays an very important role in digital image processing and practical aspects of our life. In this report, we studied various edge detection techniques as Robert, Sobel and Canny operators. On comparing them we can see that canny edge detector performs better than all other edge detectors on various aspects such as it is flexible in nature, doing better for noisy imageand gives sharp edges , low probability of detecting false edges etc DOI: 10.17762/ijritcc2321-8169.150520
    • 

    corecore