21,813 research outputs found

    FIREX mission requirements document for nonrenewable resources

    Get PDF
    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest

    Geology

    Get PDF
    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods

    Active microwave remote sensing of earth/land, chapter 2

    Get PDF
    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained

    NASA geology program bibliography

    Get PDF
    A bibliography of scientific papers, articles, and books based on research supported by the NASA Geology Program is given. The citations cover the period 1980 to 1990. An author index is included

    Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Get PDF
    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence

    Earth observations from space: Outlook for the geological sciences

    Get PDF
    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing

    A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    Get PDF
    The author has identified the following significant results. Research progress in an investigation using ERTS-1 MSS imagery to study regional tectonics and related natural resources is summarized. Field reconnaissance guided by analysis of ERTS-1 imagery has resulted in development of a tectonic model relating strike-slip faulting to crustal extension in the southern Basin Range Province. The tectonics of the northern Death Valley-Furnace Creek Fault Zone and spacially associated volcanism and mercury mineralization were also investigated. Field work in the southern Sierra Nevada has confirmed the existence of faults and diabase dike swarms aligned along several major lineaments first recognized in ERTS-1 imagery. Various image enhancement and analysis techniques employed in the study of ERTS-1 data are summarized

    A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    Get PDF
    There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined

    Interactive 3-D Visualization: A tool for seafloor navigation, exploration, and engineering

    Get PDF
    Recent years have seen remarkable advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the way we image the seafloor. The massive amounts of data produced by these systems present many challenges but also offer tremendous opportunities in terms of visualization and analysis. We have developed a suite of interactive 3-D visualization and exploration tools specifically designed to facilitate the interpretation and analysis of very large (10\u27s to 100\u27s of megabytes), complex, multi-component spatial data sets. If properly georeferenced and treated, these complex data sets can be presented in a natural and intuitive manner that allows the integration of multiple components each at their inherent level of resolution and without compromising the quantitative nature of the data. Artificial sun-illumination, shading, and 3-D rendering can be used with digital bathymetric data (DTM\u27s) to form natural looking and easily interpretable, yet quantitative, landscapes. Color can be used to represent depth or other parameters (like backscatter or sediment properties) which can be draped over the DTM, or high resolution imagery can be texture mapped on bathymetric data. When combined with interactive analytical tools, this environment has facilitated the use of multibeam sonar and other data sets in a range of geologic, environmental, fisheries, and engineering applications

    Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    Get PDF
    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products
    • …
    corecore