5 research outputs found

    Image matching algorithms in stereo vision using address-event- representation: a theoretical study and evaluation of the different algorithms

    Get PDF
    Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing has to process each frame in order to obtain a filter result or detect a feature on the input. In stereo vision, existing algorithms use frames from two digital cameras and process them pixel by pixel until it is found a pattern match in a section of both stereo frames. Spike-based processing is a relatively new approach that implements the processing by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system is able to solve much more complex problems, such as visual recognition by manipulating neuron’s spikes. The spike-based philosophy for visual information processing based on the neuro-inspired Address-Event- Representation (AER) is achieving nowadays very high performances. In this work we study the existing digital stereo matching algorithms and how do they work. After that, we propose an AER stereo matching algorithm using some of the principles shown in digital stereo methodsMinisterio de Ciencia e Innovación TEC2009-10639-C04-02 (VULCANO)European Union (UE) FP7-248582 (CARDIAC

    STEREO MATCHING ALGORITHM BASED ON ILLUMINATION CONTROL TO IMPROVE THE ACCURACY

    Full text link

    Neuromorphic Event-Based Generalized Time-Based Stereovision

    Get PDF
    3D reconstruction from multiple viewpoints is an important problem in machine vision that allows recovering tridimensional structures from multiple two-dimensional views of a given scene. Reconstructions from multiple views are conventionally achieved through a process of pixel luminance-based matching between different views. Unlike conventional machine vision methods that solve matching ambiguities by operating only on spatial constraints and luminance, this paper introduces a fully time-based solution to stereovision using the high temporal resolution of neuromorphic asynchronous event-based cameras. These cameras output dynamic visual information in the form of what is known as “change events” that encode the time, the location and the sign of the luminance changes. A more advanced event-based camera, the Asynchronous Time-based Image Sensor (ATIS), in addition of change events, encodes absolute luminance as time differences. The stereovision problem can then be formulated solely in the time domain as a problem of events coincidences detection problem. This work is improving existing event-based stereovision techniques by adding luminance information that increases the matching reliability. It also introduces a formulation that does not require to build local frames (though it is still possible) from the luminances which can be costly to implement. Finally, this work also introduces a methodology for time based stereovision in the context of binocular and trinocular configurations using time based event matching criterion combining for the first time all together: space, time, luminance, and motion

    Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms

    Get PDF
    Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint—time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision
    corecore