9 research outputs found

    3D GANs and Latent Space: A comprehensive survey

    Full text link
    Generative Adversarial Networks (GANs) have emerged as a significant player in generative modeling by mapping lower-dimensional random noise to higher-dimensional spaces. These networks have been used to generate high-resolution images and 3D objects. The efficient modeling of 3D objects and human faces is crucial in the development process of 3D graphical environments such as games or simulations. 3D GANs are a new type of generative model used for 3D reconstruction, point cloud reconstruction, and 3D semantic scene completion. The choice of distribution for noise is critical as it represents the latent space. Understanding a GAN's latent space is essential for fine-tuning the generated samples, as demonstrated by the morphing of semantically meaningful parts of images. In this work, we explore the latent space and 3D GANs, examine several GAN variants and training methods to gain insights into improving 3D GAN training, and suggest potential future directions for further research

    AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation

    Full text link
    This paper targets on learning-based novel view synthesis from a single or limited 2D images without the pose supervision. In the viewer-centered coordinates, we construct an end-to-end trainable conditional variational framework to disentangle the unsupervisely learned relative-pose/rotation and implicit global 3D representation (shape, texture and the origin of viewer-centered coordinates, etc.). The global appearance of the 3D object is given by several appearance-describing images taken from any number of viewpoints. Our spatial correlation module extracts a global 3D representation from the appearance-describing images in a permutation invariant manner. Our system can achieve implicitly 3D understanding without explicitly 3D reconstruction. With an unsupervisely learned viewer-centered relative-pose/rotation code, the decoder can hallucinate the novel view continuously by sampling the relative-pose in a prior distribution. In various applications, we demonstrate that our model can achieve comparable or even better results than pose/3D model-supervised learning-based novel view synthesis (NVS) methods with any number of input views.Comment: ECCV 202

    Image Restoration using Automatic Damaged Regions Detection and Machine Learning-Based Inpainting Technique

    Get PDF
    In this dissertation we propose two novel image restoration schemes. The first pertains to automatic detection of damaged regions in old photographs and digital images of cracked paintings. In cases when inpainting mask generation cannot be completely automatic, our detection algorithm facilitates precise mask creation, particularly useful for images containing damage that is tedious to annotate or difficult to geometrically define. The main contribution of this dissertation is the development and utilization of a new inpainting technique, region hiding, to repair a single image by training a convolutional neural network on various transformations of that image. Region hiding is also effective in object removal tasks. Lastly, we present a segmentation system for distinguishing glands, stroma, and cells in slide images, in addition to current results, as one component of an ongoing project to aid in colon cancer prognostication

    Video Understanding: A Predictive Analytics Perspective

    Get PDF
    This dissertation includes a detailed study of video predictive understanding, an emerging perspective on video-based computer vision research. This direction explores machine vision techniques to fill in missing spatiotemporal information in videos (e.g., predict the future), which is of great importance for understanding real world dynamics and benefits many applications. We investigate this direction with depth and breadth. Four emerging areas are considered and improved by our efforts: early action recognition, future activity prediction, trajectory prediction and procedure planning. For each, our research presents innovative solutions based on machine learning techniques (deep learning in particular) and meanwhile pays special attention to their interpretability, multi-modality and efficiency, which we consider as critical for next-generation Artificial Intelligence (AI). Finally, we conclude this dissertation by discussing current shortcomings as well as future directions

    Video Understanding: A Predictive Analytics Perspective

    Get PDF
    This dissertation includes a detailed study of video predictive understanding, an emerging perspective on video-based computer vision research. This direction explores machine vision techniques to fill in missing spatiotemporal information in videos (e.g., predict the future), which is of great importance for understanding real world dynamics and benefits many applications. We investigate this direction with depth and breadth. Four emerging areas are considered and improved by our efforts: early action recognition, future activity prediction, trajectory prediction and procedure planning. For each, our research presents innovative solutions based on machine learning techniques (deep learning in particular) and meanwhile pays special attention to their interpretability, multi-modality and efficiency, which we consider as critical for next-generation Artificial Intelligence (AI). Finally, we conclude this dissertation by discussing current shortcomings as well as future directions
    corecore