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ABSTRACT 

Image Restoration using Automatic Damaged Regions Detection and Machine Learning-Based 

Inpainting Technique 

by Chloe Furness Martin-King 

 

In this dissertation we propose two novel image restoration schemes. The first pertains to 

automatic detection of damaged regions in old photographs and digital images of cracked 

paintings. In cases when inpainting mask generation cannot be completely automatic, our 

detection algorithm facilitates precise mask creation, particularly useful for images containing 

damage that is tedious to annotate or difficult to geometrically define. The main contribution of 

this dissertation is the development and utilization of a new inpainting technique, region hiding, 

to repair a single image by training a convolutional neural network on various transformations of 

that image. Region hiding is also effective in object removal tasks. Lastly, we present a 

segmentation system for distinguishing glands, stroma, and cells in slide images, in addition to 

current results, as one component of an ongoing project to aid in colon cancer prognostication. 
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 1 Introduction 

 Image restoration and manipulation have been popular since the advent of photography. 

What was once meticulously done by hand is now possible to do digitally and automatically. 

Image inpainting tasks embody the many ways in which missing or unwanted regions in an 

image are repaired. Just as a museum’s art restoration expert will use intact content to renovate 

damaged areas in a painting, digital image inpainting utilizes extant pixel values to calculate and 

assign new values to damaged or missing pixels. Many traditional inpainting methods rely on 

boundary conditions and partial differential equations (PDEs) to model and discretely implement 

diffusion such that neighboring pixel values are propagated into the interior of the damaged 

region. Methods that do not rely on PDEs, such as nonlocal, exemplar-based inpainting, produce 

markedly improved results over their locally restricted counterparts. However, both PDE and 

non-PDE-based inpainting models are often supplemented with preprocessing and 

postprocessing techniques to improve visual results. Furthermore, even clever combinations of 

systems fall short because these methods depend solely on a single image to provide adequate 

material. 

 To overcome this issue, computational and image processing scientists have turned to 

machine learning, particularly, convolutional neural networks (CNNs). The typical requirements 

of such systems are access to many training and validation samples, time and resources to train a 

CNN, and/or access to appropriate open source pretrained weights. Additionally, multiple images 

with similar content to the damaged image may be difficult to find, if available at all. 

Nonetheless, machine learning-based inpainting systems provide impressive results. Although 
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access to large, diverse, image repositories significantly contributes to the success of CNNs in 

inpainting tasks, especially if repairing images containing unique features, like faces, it is a 

collaboration of several factors that produces such compelling predictions. Admittedly, CNNs 

can train on relatively few images and perform remarkably well on segmentation and 

classification tasks [3] [4].  

 In this dissertation we detail a thorough investigation of image restoration techniques, 

propose a novel inpainting technique using machine learning, and expand image processing into 

the field of computational pathology to aid in colon cancer prognostication based on biopsy slide 

images. A desire to find an interesting and meaningful problem to apply our prospective 

solutions to led to a timely and important collaboration of image processing, deep learning, and 

computational pathology. This dissertation represents a melding of solution, problem, and real-

world application. The journey began as an interest in image processing, particularly, image 

restoration using inpainting and texture synthesis. 

 We will first discuss previous and current research pertaining to image restoration before 

transitioning into our automatic damaged regions detection algorithm. Then we will describe our 

novel inpainting technique: region hiding. Next, we will introduce computational pathology, 

important biological aspects and background information pertaining to colon cancer, explain the 

problem that our work aims to address, and describe the segmentation processes. Lastly, we have 

included derivations of meaningful PDEs for use in discrete image restoration algorithms in 

Appendices A and B, additional biopsy slide image structures segmentation results in Appendix 

C, and the CNN architecture used with region hiding for inpainting in Appendix D. 
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 2 Traditional and Non-Machine 
Learning-Based Image Restoration 

2.1 Basic Inpainting Using Heat Transfer Equations 

 One classic PDE-based inpainting method relies on the mathematical description of heat 

transfer through a solid: ݑ௧ ൌ ௫௫ݑ ൅ ,ݕ,ݔሺݑ ௬௬, whereݑ ,ݔሻ is the temperature at location ሺݐ  ሻݕ

and time ݐ. In image processing applications, the heat transfer equation can be represented 

discretely using second order Taylor series approximations. Missing pixel values are calculated 

using the values of neighboring intact pixels. Once a missing pixel’s value is assigned, it can be 

used to calculate other missing pixel values. An iterative approach, which is addressed by the 

time variable ݐ in the heat transfer equation, allows a pixel that has already been assigned a value 

in a previous iteration to be assigned a new value. This is based on a series of updater steps in 

which the last value of a target pixel is used in tandem with the nonchanging value of a 

neighboring pixel to calculate the new value of the target pixel. 

 Inpainting a digital image requires that the heat transfer equations be treated discretely as 

difference equations. Before difference equations are applied to the target region, a two-pixel 

thick boundary immediately surrounding the region is utilized to interpolate the initial one-pixel 

thick interior of the region. In image processing tasks, two-dimensional image pixel locations are 

represented in the familiar coordinate format, ሺݔ,  ሻ. However, pixel indices signify locationsݕ

that are different from the ݔ and ݕ values on a standard two-dimensional coordinate plain. 

Starting from the top, left corner of the image, ሺ0,0ሻ, the first value, ݔ, indicates how many 
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pixels downward from the origin the location is. The second value, ݕ, indicates how many pixels 

to the right of the origin the location is. To force the information from the outside of the region 

into the inside of the region, given edge location in relation to the origin of the image, the 

discrete double derivative equations must be altered counter intuitively. As shown in Figure 2-1, 

for a two dimensional image, ܫ ൌ  ሻ, the top and left edges may be approximated usingݕ,ݔሺܫ

equations (2.1) and (2.2). However, for the bottom and right edges, the application is reversed, as 

in equations (2.3) and (2.4). 

Top edge: 

ሻݕ,ݔሺܫ ൌ ݔሺܫ2 െ ሻݕ,1 െ ݔሺܫ െ 	,ሻݕ,2 (2.1) 

where ݔ ൌ ݅ is constant and ݕ ൌ ݆: ݆ ൅ ݊. 

Left edge: 

ሻݕ,ݔሺܫ ൌ ݕ,ݔሺܫ2 െ 1ሻ െ ,ݔሺܫ ݕ െ 2ሻ,	 (2.2) 

where ݕ ൌ ݆ is constant and ݔ ൌ ݅: ݅ ൅ ݉. 

Bottom edge: 

ሻݕ,ݔሺܫ ൌ ݔሺܫ2 ൅ ሻݕ,1 െ ݔሺܫ ൅ 	,ሻݕ,2 (2.3) 

where ݔ ൌ ݅ ൅ ݉ is constant and ݕ ൌ ݆: ݆ ൅ ݊. 

Right edge: 

ሻݕ,ݔሺܫ ൌ ݕ,ݔሺܫ2 ൅ 1ሻ െ ,ݔሺܫ ݕ ൅ 2ሻ,	 (2.4) 
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where ݕ ൌ ݆ ൅ ݊ is constant and ݔ ൌ ݅: ݅ ൅ ݉. We have included the derivations of these discrete 

boundary equations using boundary conditions in Appendix A. 

 
Figure 2-1 Visual representation of inpainting applied to a rectangular region [1]. 

 To inpaint the interior of the damaged or missing region, we apply diffusion within the 

boundary using the discrete representation of the heat transfer equation, ௧݂ ൌ ௫݂௫ ൅ ௬݂௬. 

Introducing the third variable, ݐ, which is the time component relevant to the heat-transfer 

process, allows us to iteratively reassign values within the interior using diffusion-based image 

inpainting. Although the time variable is in the third position of the function’s input tuple, which 

is often associated with channel indices, we limit our illustration to two dimensional images and 

therefore recognize ݐ as descriptive of varying time steps rather than switching through color 

channels. 

 For a two-dimensional image, ܫ ൌ ,ݕ,ݔሺܫ ,ݔሺܫ ሻ, solving forݐ ,ݕ ݐ ൅  ሻ in the discreteݎ

representation of the heat transfer equation gives us  

,ݕ,ݔሺܫ ݐ ൅ ሻݎ ൌ ,ݕ,ݔሺܫ ሻݐ ൅ ݔሺܫ൫ݎ ൅ ,ݕ,1 ሻݐ ൅ ݔሺܫ െ ,ݕ,1 ሻݐ ൅

,ݔሺܫ																																											 ݕ ൅ 1, ሻݐ ൅ ,ݔሺܫ ݕ െ 1, ሻݐ െ ,ݕ,ݔሺܫ4 	,ሻ൯ݐ
(2.5) 

࢐ ࢐ ൅  ࢔

 ࢏

࢏ ൅  ܕ
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where the step size ݎ is a small number between 0 and 1 and ݅ ൅ 1 ൑ ݔ ൑ ݅ ൅ ݉ െ 1 and ݆ ൅ 1 ൑

ݕ ൑ ݕ ൅ ݊ െ 1. In practice, a large number of steps in tandem with the small step size is used to 

gradually fill in the missing information in an iterative process descriptive of heat transfer over 

time. We have also included the derivation of the discrete heat transfer equation in Appendix A. 

2.2 Texture Synthesis and Patch Based Image Interpolation 

 Simple PDE-based inpainting models are easy to implement and most effective with 

small inpainting regions. When inpainting regions encompass patterned objects, diffusion can be 

paired with texture synthesis to improve inpainting results [5] [6]. The authors of [5] propose an 

impressive scheme in which the target image is separated into two components; texture and 

structure. The texture component is inpainted using a straight-forward texture synthesis 

procedure such that missing or damaged pixels are assigned values based on a set of accessible 

nearby pixels. The similarity metric used in [5], per the suggestion of [7], is the normalized sum 

of squared differences, ∑ሺݑ െ ݉ is an ݑ ොሻଶ, whereݑ ൈ ݊ patch of pixels adjacent to the missing 

or damaged pixel of interest, and ݑො  is an ݉ ൈ ݊ patch of pixels within a specific neighborhood 

distance of the missing or damaged region. The algorithm is illustrated by the diagram in Figure 

2-2 as similarly presented in [5]. 
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   ܽ  ො௔ݑ          

               

               

        Target ݅  ݑ   

     

Missing Region 

     

          

          

          

               

   ܾ  ො௕ݑ          

        ܿ  ො௖ݑ     

               

               

Figure 2-2 Basic texture synthesis algorithm diagram. Patches ݑො௔, ݑො௕, and ݑො௖ correspond to 
candidate pixels, ܽ, ܾ, and ܿ, respectively. The missing or damaged target pixel, ݅, is assigned the 

value of pixel ܿ based on the similarity metric determining ݑො௖ to be the best match for ݑ. 

 The authors utilize high-order PDEs for image inpainting to fill in damaged or missing 

regions of the structure component of the original image. This is a common method of 

propagating known boundary information (neighboring pixel values) into missing regions so that 

isophote directions are heeded and edge locations and their corresponding contrasts are 

preserved. Isophote lines delineate pixels of a certain intensity from pixels of another intensity in 

adjacent regions. Visually, this translates to compartmentalizing areas that are subjected to the 

same amount of light. Regarding isophote directions can be just as important as edge 

preservation in image restoration. Numerically solving 
డூ

డ௧
ൌ ሻܫ∆ሺ׏ ∙  ሻ is theܫ∆ሺ׏ where ,ܫୄ׏

Laplacian of the gradient of ܫ and ܫୄ׏ is the orthogonal gradient of ܫ, effectively achieves this 

propagation.  

 To overcome the texture synthesis algorithm weighing each distance equally in its 

discernment of similarity regardless of the location of the prospective pixel with respect to the 
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damaged pixel, [7] proposes applying a Gaussian kernel to the sum of squared distances value. 

Figure 2-3 shows the two image components after applying the associated texture synthesis and 

structure inpainting. The image on the bottom left is the result from adding the two repaired 

components. Both structure and texture are represented appropriately. 

 
Figure 2-3 Texture synthesis with PDE-based inpainting results on Barbara image [8]. From top 
to bottom, left to right: Damaged input image, inpainted structure image, final restoration result 
from adding the structure and texture images together, and texture synthesized texture image. 

 Other methods, such as [9], aim to overcome the familiar challenge of interpolating 

underlying textures and patterns present in missing regions by employing high dimensional 

model representations with Lagrange interpolation to generate candidate inpainted regions, then 

selecting the best inpainted region to fill the missing region. The algorithm selects the best pixel 

intensity for the damaged region by considering pixel intensity changes surrounding the damaged 

region and exploiting patch rotation to determine the most appropriate candidates. PatchMatch 

[10], although not specifically developed for the purpose of inpainting, is regarded as one of the 

leading non-machine learning methods of real-time digital image restoration. The algorithm 
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generates a matrix of distance values in which each element represents the distance between a 

patch in image A and its nearest neighbor patch in image B. In the context of inpainting, possible 

solutions for the missing regions of image A are determined by iteratively searching for similar 

patches in the nondamaged regions of A. 

2.3 Total Variation in Image Denoising and Inpainting 

 Total variation (TV) regularization is featured in many image restoration tasks because of 

its ability to suppress noise yet preserve edges and maintain overall structure. It was initially 

introduced as an essential component of the nonlinear noise removal algorithm proposed in the 

famous Rudin-Osher-Fatemi (ROF) paper [11]. To separate the structure and texture components 

in Figure 2-3, we applied TV denoising to the entire input image to obtain the structure 

component then subtracted this from the input image to obtain the texture component. For 

interested readers, we have included derivation of the discrete TV flow equation as well as 

exploration of how applying TV directly affects pixel values in Appendix B. Complementing 

diffusion or other inpainting techniques with a TV regularization term manifests as a smoothing 

quality within the result. 

 Digital image compression and transmission are processes in which data loss can occur. 

In [12], the authors regard digital images as vector valued functions and utilize TV minimization 

to restore images that have been compromised by lossy compression for transmission or 

communication. The inpainting process is guided by the wavelet domain rather than the pixel 

domain. This is motivated by the fact that the JPEG2000 image compression standard relies on 

the discrete wavelet transform (DWT). In the pixel domain, it is necessary to assume a decoupled 

relationship between pixels that are a threshold distance away from each other for the purpose of 
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denoising. However, wavelets inpainting requires a forced relationship between wavelet 

regularities to correlate the missing and existing components. 

 Damage within the wavelet domain propagates throughout the spatial domain with 

varying degrees of degradation. This implies that the damage is spatially inhomogeneous. It 

would be unreasonable to inpaint within the spatial domain because the corruption cannot be 

geometrically defined and repaired. The boundaries of the damaged regions are indistinct and 

diffusion-based inpainting would introduce noise since corrupted pixels would be used to repair 

missing pixels. The algorithms in [12] restore missing wavelet coefficients and repair corrupt 

wavelet packets, manifesting as properly restored edges and contours in the spatial domain. In a 

noiseless image, the first model proposed in [12] fills the missing wavelet coefficients using TV 

minimization. Alternatively, if the image is noisy, a second model for wavelet inpainting is used. 

The second model differs from the first in that it includes an additional term; the weighted sum 

of squared differences between the stored wavelet coefficients of the corrupted image and the 

predicted wavelet coefficients. The weight is equivalent to zero in the inpainting regions of the 

wavelet domain and equal to a positive constant otherwise. In section 2.4, we discuss how 

inpainting is applied to the spatial domain after compression to decode an encoded image. 

2.4 Homogeneous Diffusion Inpainting for Image Compression 

 In this section we describe the use of PDEs-based inpainting in compressed image 

restoration by concentrating on the methods explored in [13] and [14]. “Edge-Based 

Compression of Cartoon-like Images with Homogeneous Diffusion,” employs PDEs-based 

inpainting for compressed image reconstruction [13]. “Optimising Spatial and Tonal Data for 

PDE-Based Inpainting,” authored in part by two corresponding authors of [13], also employs 



 

11 

homogeneous diffusion inpainting for compressed image reconstruction but with an added focus 

on spatial and tonal optimization [14]. 

 Pixel values that lie directly on top of an edge in an image are not useful for 

decompression since edges often delineate structures with drastically different pixel values. 

Therefore, the compression method in [13] stores the pixel values on both sides of an edge. The 

compressed image is stored in two main components, an encoded edge map and a vector of 

encoded key pixel values. A header file to inform the decompression unit which coders were 

used to encode specific details of the image is employed together with the edge and pixel value 

data. In the last step, homogeneous diffusion is used to reconstruct regions between the edges. 

Much of the process is outside of the scope of this dissertation. However, for interested readers, 

intuitive and detailed algorithms and discussions are provided in [13]. 

 
Figure 2-4 From left to right, (a) Input image to be compressed [15], (b) results from applying 
smoothed Laplacian magnitude inverse, and (c) results from applying Floyd-Steinberg error 

diffusion dithering to the inverted Laplacian magnitude in (b). 

 Our results from applying the smoothed Laplacian magnitude inverse to the original 

image, then applying Floyd-Steinberg error diffusion dithering [16] to the inverted Laplacian 

(a) Image to be compressed (b) Rescaled inverted 
Laplacian magnitude of (a) 

(c) Floyd-Steinberg error 
diffusion dithering applied to 

(b) 



 

12 

magnitude as suggested in [14], are shown in Figure 2-4. Utilizing the same parameter values as 

[14] with Gaussian pre-smoothing standard deviation ߪ ൌ 1,  dithering parameter ݏ ൌ 0.8, and a 

mask pixel density of 4%, or ݀ ൌ 0.04, the rescaled Laplacian magnitude is: 

.଴ସ∗୫ୟ୶ሺூሻ

௠௘௔௡ሺ|∆ூಸ|బ.ఴሻ
∗ ܫீ∆| |଴.଼,	 (2.6) 

where ீܫ  is the Gaussian smoothed version of the image to be compressed, ܫ, and maxሺܫሻ is the 

maximum possible pixel value in ܫ. In [14], the authors implement electrostatic halftoning to 

attain a binary point mask that preserves the average pixel value at each location. Next, the 

authors create an inpainting mask to preserve prime pixel locations then fine-tune the grayscale 

pixel values. 

 Because the missing region is not what is typically associated with inpainting tasks, i.e., 

the region to be restored exists throughout the entire image domain, the authors of [13] and [14] 

propose the following homogeneous diffusion inpainting scheme: 

ܿሺݔሻ൫ݑሺݔሻ െ ݂ሺݔሻ൯ ൅ ൫1െ ܿሺݔሻ൯∆ݑሺݔሻ ൌ 0,	 (2.7) 

with homogeneous Neumann boundary conditions implemented solely across the image 

boundaries that are encoded in the edge map (instead of also including the stored pixel values as 

Dirichlet boundary conditions). Here, ݔ is a tuple indicating pixel location in a two-dimensional 

image, ܿሺݔሻ is the value 0 or 1 depending on whether the stored pixel value is known at the 

location specified by ݑ ,ݔ is the solution of the PDE, ݂ is the original image, and ∆ݑ is the 

Laplacian of ݑ. For simplicity, the two cases can be represented as follows: 

൜
ሻݔሺݑ െ ݂ሺݔሻ ൌ 0, ܿሺݔሻ ൌ 1
ሻݔሺݑ∆ ൌ 0,												 ܿሺݔሻ ൌ 0

.	 (2.8) 
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 The main difference of interest to us between the two papers is that [14] pursues the use 

of more advanced inpainting operators than the Laplacian. The two additional operators 

examined are the biharmonic operator and edge-enhancing diffusion (EED). The operator of 

more relevance to us is the EED operator. Inpainting across edges is an enduring issue which is 

why an exploration of this anisotropic nonlinear diffusion operator is worthwhile. In the EED 

formulation, ∆ݑ is replaced by ݀݅ݒሺܦሺݑ׏ఙሻݑ׏ሻ: 

ܿሺݔሻ൫ݑሺݔሻ െ ݂ሺݔሻ൯ ൅ ൫1െ ܿሺݔሻ൯݀݅ݒሺܦሺݑ׏ఙሻݑ׏ሻ ൌ 0,	 (2.9) 

From calculus, we recall that in two dimensions the gradient ݑ׏ ൌ ർడ௨
డ௫
, డ௨
డ௬
඀ and the divergence of 

a vector field, ܨ ൌ ሻܨሺݒ݅݀ ଶۧ, isܨ,ଵܨۦ ൌ డிభ
డ௫

൅ డிమ
డ௬

. Additionally, the positive definite matrix 

 ఙ is the Gaussian smoothed version of theݑ ఙሻ is an inhomogeneous diffusion tensor, whereݑ׏ሺܦ

image ݑ. The diffusion process is guided by the eigenvalues and eigenvectors of the diffusion 

tensor which depend on the gradient of ݑఙ. The eigenvectors are cleverly chosen so that one is 

orthogonal to ݑ׏ఙ for full diffusion along image edges. The other is chosen to be parallel to ݑ׏ఙ 

with an eigenvalue dependent on the contrast of neighboring pixels to reduce diffusion across 

high-contrast edges. Image inpainting with EED can reconstruct edges with high quality, even 

when the specified data is sparse [14]. 
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Figure 2-5 Inverted Laplacian magnitude after thresholding. 

 We were inspired by the appearance of the rescaled and inverted Laplacian magnitude 

due to the nature of the edges rather than the binary point mask. We immediately observed that 

this pre-dithering mask component had done a superb job of representing pixels on both sides of 

an edge. This preservation of pixel values and locations hinted at a solution to the blurred edges 

and patterns present in inpainted regions in our own work. Altering the pixel mask density 

allowed us to generate either more drastic or more subtle inverted Laplacian magnitude matrices 

(Figure 2-4, center), which were then utilized to create masks for damaged regions inpainting. 

Figure 2-5 shows a thresholded version of the inverse Laplacian magnitude in which the 

locations of values that are greater than 0.8 ∗maxሺ|ܫீ߂ |௦ሻ are represented.  The lines on both 

sides of the contours can be visibly discerned. We explore how the Laplacian magnitude aids in 

damaged regions detection and edge preservation in image restoration in section 3.4. 
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 3 Automatic Damaged Regions 
Detection Algorithm and Restoration 
of Damaged Photographs 

 Whether a digital image suffers from missing pixel information resulting from 

compression or transmission, or an old family photograph is damaged by age and is now cracked 

and discolored, digital inpainting techniques have tended to offer visually pleasing results. In the 

case of nondigital photographs, it can be difficult to design appropriate inpainting masks due to 

the nature of commonly encountered damage types. For example, old photographs may have 

damage manifest as scratches, blotches, or speckles that cover a large portion of the image. 

Although noise removal algorithms can help, it is often necessary to include an inpainting mask. 

Manually selecting damaged regions in a scanned photograph can be cumbersome and imprecise. 

In this chapter, we propose a solution to manual mask creation when the damage is difficult to 

encapsulate; a solution that is suitable for old photograph restoration. 

3.1 Automatic Crack Detection in Photographed Scenes using Singular 
Value Decomposition 

 The authors of [17] use singular value decomposition (SVD) to automatically determine 

the locations of damaged regions in the scene of which the photograph was taken, thus 

eliminating the need for manual target region selection and mask creation. Their motivation is to 

allow viewers to visually appreciate the restored versions of the damaged objects without cracks 

and breaks associated with time and exposure to the elements. The authors use a sliding window 
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technique that compares two adjacent pixels based on ݉ by ݊ patches of neighboring pixels. For 

adjacent pixels, ݌ ൌ ሺ݅, ݆ሻ and ݍ ൌ ሺ݅, ݆ ൅ 1ሻ in two-dimensional image ܫ, where ݉ ൌ ݊ ൌ 3,  

equations (3.1) and (3.2) represent the 3 by 3 patches associated with each pixel. Notice that 

there is a 3 by 2 patch of overlapping pixels. The column vectors ݒ௣ and ݒ௤ are the flattened 

versions of these patches as shown in equations (3.3) and (3.4). Once the 9 by 2 matrix ܣ is 

constructed for patches ߶௣ and ߶௤, singular value decomposition is applied to ܣ. There are only 

two singular values in ∑	on the diagonal and therefore, ∑ can be reduced from a 9 by 2 matrix to 

a 2 by 2 matrix making it possible to find ܸ∑. Now, the similarity between the patches ߶௣ and 

߶௤ is given by the cosine of the angle between ݓଵ and ݓଶ, where ݓଵ and ݓଶ are the rows of ܸ∑. 

Equation (3.6) shows this similarity measure. 

߶௣ ൌ ቎
௜,௝ܫ ௜,௝ାଵܫ ௜,௝ାଶܫ
௜ାଵ,௝ܫ ௜ାଵ,௝ାଵܫ ௜ାଵ,௝ାଶܫ
௜ାଶ,௝ܫ ௜ାଶ,௝ାଵܫ ௜ାଶ,௝ାଶܫ

቏	 (3.1) 

  

߶௤ ൌ ቎
௜,௝ାଵܫ ௜,௝ାଶܫ ௜,௝ାଷܫ
௜ାଵ,௝ାଵܫ ௜ାଵ,௝ାଶܫ ௜ାଵ,௝ାଷܫ
௜ାଶ,௝ାଵܫ ௜ାଶ,௝ାଶܫ ௜ାଶ,௝ାଷܫ

቏ (3.2) 

  

௣ݒ ൌ ሾܫ௜,௝ ௜,௝ାଵܫ ௜,௝ାଶܫ …  ௜ାଶ,௝ାଶሿ் (3.3)ܫ

  

௤ݒ ൌ ሾܫ௜,௝ାଵ ௜,௝ାଶܫ ௜,௝ାଷܫ …  ௜ାଶ,௝ାଷሿ் (3.4)ܫ

  

ܣ ൌ ሾݒ௣  ௤ሿ (3.5)ݒ

  

௣௤൯ߠ൫ݏ݋ܿ ൌ
ଵݓ ∙ ଶݓ

‖ଶݓ‖‖ଵݓ‖
 (3.6) 
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3.2 Our Improved Detection Method 

 We chose to use SVD to compare adjacent pixels but found that this primarily detected 

vertically damaged regions. We altered our program to detect horizontal and diagonal regions as 

well by including a third vector, ݓଷ, and adjusting the similarity metric. In our method, ∑ is 

resized to be a 3 by 3 diagonal matrix with the singular values of ܣ on the diagonal. Since ܸ∑ 

now has three rows, a third vector, ݓଷ, is introduced. The similarity measure used in our program 

is a modified version of equation (3.6) given by equation (3.10). Next, a 3 by 3 matrix is created 

for each primary pixel consisting of a subset of associated values calculated with ܿݏ݋൫ߠ௣௤௥∗ ൯. 

Finally, a similarity matrix of size ܫ is produced where each element is calculated as a sum of all 

values contained within each subset of  ܿݏ݋൫ߠ௣௤௥∗ ൯. The values of this similarity matrix are then 

compared with a threshold value ߜ, which is proportionally based on the size of ߶௥. 

߶௥ ൌ ቎
௜ାଵ,௝ܫ ௜ାଵ,௝ାଵܫ ௜ାଵ,௝ାଶܫ
௜ାଶ,௝ܫ ௜ାଶ,௝ାଵܫ ௜ାଶ,௝ାଶܫ
௜ାଷ,௝ܫ ௜ାଷ,௝ାଵܫ ௜ାଷ,௝ାଶܫ

቏	 (3.7) 

  

௥ݒ ൌ ሾܫ௜ାଵ,௝ ௜ାଵ,௝ାଵܫ ௜ାଵ,௝ାଶܫ …  ௜ାଷ,௝ାଶሿ் (3.8)ܫ

  

ܣ ൌ ሾݒ௣ ௤ݒ  ௥ሿ (3.9)ݒ

  

∗௣௤௥ߠ൫ݏ݋ܿ ൯ ൌ ௣௤൯ߠ൫ݏ݋ܿ ௤௥൯ߠ൫ݏ݋ܿ  ௣௥൯ (3.10)ߠ൫ݏ݋ܿ

Calculations were performed in MATLAB. Matrices ܷ, ܸ, and ∑ were obtained using the ݀ݒݏ 

function [18]. 
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3.3 Experimental Results 

 We examined the usefulness of our proposed method considering both digital images of 

cracks in walls and pavement and scanned damaged photographs. Some of our results are 

presented in this section. Figure 3-1 shows a damaged painted walkway, the results from 

applying our damaged region detection algorithm with the output overlaid on the input image, 

and the results from using diffusion based inpainting with texture synthesis. The automatic 

detection results were generated with ݉ ൌ ݊ ൌ 3 and ߜ ൌ ଵ

௠௡
∗ 0.99. We utilized a technique 

similar to the hybrid structure and texture inpainting method proposed in [5] and described in 

section 2.2 of this dissertation. 

 After generating the inpainting mask from the automatic detection results, we 

implemented diffusion to fill the masked regions, then applied total variation denoising to the 

entire resulting image. This “denoised” image was created to capture the structural component, 

 of the inpainted image, shown in part (c) of Figure 3-1. Subtracting the structural component ,ݑ

from inpainted image produces the textural component, ݒො, shown in part (f) of Figure 3-1. To 

adopt the appropriate texture from the surrounding unmasked areas, we applied texture synthesis 

to ݒො, with a neighborhood size of 15 to obtain ݒ, represented in part (e). We have rescaled and 

shifted ݒො and ݒ so that they are easier to see. 

 Figure 3-2 also shows damaged pavement but with finer cracks than in Figure 3-1. The 

results from applying our automatic damaged regions detection algorithm with ݉ ൌ ݊ ൌ 3 and 

ߜ ൌ ଵ

௠௡
∗ 0.94 are overlaid on the input image, shown in part (b). We again utilized structure 

inpainting in tandem with texture synthesis. The result from using diffusion-based inpainting 

with texture synthesis is shown in part (d). After implementing diffusion to fill the masked 
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regions, we applied total variation denoising to the entire resulting image to capture the structural 

component, ݑ, of the inpainted image, shown in part (c). Subtracting the structural component 

from inpainted image produces the textural component, ݒො, represented in part (f). Texture 

synthesis was applied to ݒො, with a neighborhood size of 15 to obtain ݒ, represented in part (e). 

Again, ݒො and ݒ have been rescaled and shifted. 
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Figure 3-1 From left to right, top to bottom: (a) Image of cracked pavement1 [19], (b) results from 

applying our automatic detection algorithm, (c) structure image after inpainting (b) with simple 
diffusion, (d) final result from adding the inpainted structure (c) and synthesized texture (e) 
images, (e) texture image after applying texture synthesis with neighborhood size of 15, (f) 

texture image before applying texture synthesis, (g) enlarged final result with selected region 
outlined in green and close-ups of the input image, the synthesized texture image, the  

 
1 A Crack in the Pavement of a Chequered Neighborhood by Matthew Rutledge is licensed under CC BY-NC 2.0. 
Resized from original. 

(a) Pavement with crack (b) Automatic detection results 

with ߜ ൌ 0.99
ଵ

௠௡
 

(c) Inpainted structure image, ݑ 

(d) Final result (ݑ ൅  Texture image after synthesis (e) (ݒ
ሺ6ݒ ൅ 0.4ሻ 

(f) Inpainted texture image 
before synthesis ሺ6ݒො ൅ 0.4ሻ 

(g) Enlarged final result (ݑ ൅  with region (ݒ
of interest outlined in green 

Input image 6ݒ ൅ ොݒ6 0.4 ൅ 0.4 

Detection ݑ ൅ ݑ ݒ ൅  ොݒ
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pre-synthesized texture image, our detection results, our final results, and results without applying 
texture synthesis. 

 

 

Figure 3-2 From left to right, top to bottom: (a) Image of cracked pavement2 [20], (b) results from 
applying our automatic detection algorithm, (c) structure image after inpainting (b) with simple 

diffusion, (d) final result from adding the inpainted structure (c) and synthesized texture (e) 

 
2 Pavement cracks 1 (2) by alien_sunset is licensed under CC BY 2.0. Resized from original. 

(a) Pavement with crack (b) Automatic detection results 

with ߜ ൌ 0.94
ଵ

௠௡
 

(c) Inpainted structure image, ݑ 

(d) Final result (ݑ ൅  Texture image after synthesis (e) (ݒ
ሺ6ݒ ൅ 0.4ሻ 

(f) Inpainted texture image 
before synthesis ሺ6ݒො ൅ 0.4ሻ 

(g) Enlarged final result (ݑ ൅  with region (ݒ
of interest outlined in green 

Input image 6ݒ ൅ ොݒ6 0.4 ൅ 0.4 

Detection ݑ ൅ ݑ ݒ ൅  ොݒ
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 images, (e) texture image after applying texture synthesis with neighborhood size of 15, (f) 
texture image before applying texture synthesis, (g) enlarged final result with selected region 

outlined in green and close-ups of the input image, the synthesized texture image, the pre-
synthesized texture image, our detection results, our final results, and results without applying 

texture synthesis. 

 Addressing damage at the border of the image is problematic because the size of ߶ 

restricts the algorithm from operating within a certain number of pixels from the edge. If ߶ is an 

݉ ൈ ݊ patch and the input image is ܯ ൈܰ, then the initial detection mask will be of shape 

ሺܯ െ݉ሻ ൈ ሺܰ െ ݊ሻ. To superimpose the mask on the input image, we use padding so that the 

mask is the same size as the image. If ݉ and ݊ are odd values, there will be a line of ones of 

thickness 
௠ିଵ

ଶ
 pixels on the top edge, 

௡ିଵ

ଶ
 pixels on the left edge, 

௠ାଵ

ଶ
 pixels on the bottom edge, 

and 
௡ାଵ

ଶ
 pixels on the right edge. Our solution to this issue is to extend the ones-padded mask to 

the edge of the image using nearest neighbor mask values. For example, if the mask has a value 

of zero at the location ሺܯ െ 2, 2ሻ, indicating the location of a missing pixel in the bottom left 

corner of the input image, then the mask will be updated to contain zeros at locations ሺܯ െ 1, 2ሻ 

and ሺܯ, 2ሻ.   

 Once the image and mask are passed into the inpainting program, the issue again arises 

due to the nature of the diffusion operation which relies on intact neighboring pixels to calculate 

the missing pixel values. Because the damage is not rectangular, the diffusion operation is only 

applied if a mask value of 0 is reached. To inpaint damaged pixels at the very edges of an image, 

we applied the boundary condition equations outward toward the borders of the image after 

inpainting the interior of the image (rather than applying the boundary condition equations 

inward from the boundaries of the damaged regions before inpainting the interior). 
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 Suppose ܫ is the ܯ ൈܰ input image to be repaired and ܤ is the ܯ ൈܰ binary mask in 

which a value of zero indicates the location of a missing or damaged pixel in ܫ. For a 3 ൈ 3 

inpainting kernel, the one-pixel thick padded top border is inpainted as follows: 

,ሺ1ܫ ሻݕ ൌ ൜
ሻݕ,ሺ2ܫ2 െ ,ሻݕ,ሺ3ܫ if	ܤሺ1,ݕሻ ൌ 0

,ሻݕ,ሺ1ܫ otherwise						
, (3.11) 

where ݕ ൌ 2:ܰ െ 2. The operation begins at ݕ ൌ 2 because beginning at ݕ ൌ 1 would involve 

using the values of the missing pixels at ሺ2,1ሻ and ሺ3,1ሻ to inpaint the pixel at ሺ1,1ሻ. The pixel at 

ሺ1,1ሻ is repaired when the one-pixel thick padded left border is inpainted. Furthermore, the 

operation ends at ݕ ൌ ܰ െ 2 since the right border has two-pixel thick padding and inpainting 

the pixel located at ሺ1,ܰ െ 1ሻ using the values of the pixels at ሺ2,ܰ െ 1ሻ and ሺ3,ܰ െ 1ሻ would 

be counterproductive. The pixel at ሺ1,ܰ െ 1ሻ is repaired when the two-pixel thick padded right 

border is inpainted. 

 The two-pixel thick padded bottom border is inpainted using 

ܯሺܫ െ ሻݕ,1 ൌ ൜
ܯሺܫ2 െ ሻݕ,2 െ ܯሺܫ െ ,ሻݕ,3 if	ܤሺܯ െ 1, ሻݕ ൌ 0

ܯሺܫ െ ,ሻݕ,1 otherwise						
, (3.12) 

  

ሻݕ,ܯሺܫ ൌ ൜
ܯሺܫ2 െ ሻݕ,1 െ ܯሺܫ െ ,ሻݕ,2 if	ܤሺݕ,ܯሻ ൌ 0

,ܯሺܫ ,ሻݕ otherwise						
, 

(3.13) 

where ݕ ൌ 2:ܰ െ 2. The one-pixel thick left border is inpainted with 

,ݔሺܫ 1ሻ ൌ ൜
,ݔሺܫ2 2ሻ െ ,ݔሺܫ 3ሻ, if	ܤሺݔ, 1ሻ ൌ 0

,ݔሺܫ 1ሻ, otherwise						
, (3.14) 

where ݔ ൌ  Utilizing the values at ሺ1,2ሻ and ሺ1,3ሻ to inpaint the missing pixel at ሺ1,1ሻ is .ܯ:1

appropriate since each was inpainted when the one-pixel thick top border was repaired using 

(3.11). Lastly, the two-pixel thick padded right border is inpainted using 
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ܰ,ݔሺܫ െ 1ሻ ൌ ൜
ܰ,ݔሺܫ2 െ 2ሻ െ ܰ,ݔሺܫ െ 3ሻ, if	ܤሺݔ,ܰ െ 1ሻ ൌ 0

ܰ,ݔሺܫ െ 1ሻ, otherwise						
, (3.15) 

  

ሻܰ,ݔሺܫ ൌ ൜
ܰ,ݔሺܫ2 െ 1ሻ െ ܰ,ݔሺܫ െ 2ሻ, if	ܤሺݔ,ܰሻ ൌ 0

,ሻܰ,ݔሺܫ otherwise						
, 

(3.16) 

where ݔ ൌ  .ܯ:1

 For images of pavement, resolving damaged regions at the exterior of the input image 

may seem trivial. However, in the case of artwork or portraiture, the ability to repair missing 

pixels even at the edges of the image is worthwhile. Figure 3-3 shows the results from applying 

our detection method and inpainting to the image of an old, cracked painting [21]. Without the 

use of SVD automatic detection, it would be tedious to manually create an inpainting mask. We 

have also included the results from using TV denoising and Gaussian smoothing, since these 

methods are considered reasonable initial attempts at restoration for images with fine, 

widespread damage as contained in Figure 3-3. Comparing the close-up images indicates that TV 

denoising does not diminish the appearance of the fine cracks whereas our method successfully 

detects many of the fine lines and fills in the missing information appropriately. 
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Figure 3-3 From left to right, top to bottom: (a) Close-up of an old painting with very fine cracks 

[21], (b) automatic detection results using our SVD algorithm with ߜ ൌ 0.991 ቀ
ଵ

௠௡
ቁ, (c) 

restoration results from applying inpainting, (d) restoration results from applying TV denoising to 
the entire image, (e) restoration results from applying isotropic Gaussian smoothing kernel with 

standard deviation of 2, and (f) same as (a) with two selected regions outlined in green to indicate 
the locations of the areas examined in Figure 3-4. 

(a) Old oil painting with fine cracks (b) Automatic detection results 

(c) Our restoration results (d) TV denoising results 

(e) Gaussian smoothing results, ߪ ൌ 2 (f) Input image with ROIs outlined in 
green 
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Figure 3-4 From left to right: Two regions of interest as established in part (f) of Figure 3-3 and 

their corresponding detection and restoration results, TV denoising results, and Gaussian 
smoothing results. 

 Figure 3-5 shows two 9 ൈ 9 blocks taken from the same location in different restoration 

versions of the painting in Figure 3-4. The block on the left is taken from the inpainting results 

without applying boundary condition equations at the borders of the image. The block on the 

right is taken from the inpainting results achieved by utilizing boundary condition equations at 

the borders of the image. Notice that the pixels at indices ሺ2,9ሻ and ሺ9,6ሻ of the left block 

correspond to cracks that are resolved in the block on the right. The block is located at the 

bottom right of the input image where the diffusion that flows outward toward the bottom and 

right edges begins two pixels away from the edge. 

 

Detection 
results 

Our restoration 
results 

TV denoising 
results 

Damaged 
artwork 

Gaussian 
smoothing results 
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Figure 3-5 Two 9 ൈ 9 blocks taken from the same location in different restoration versions of the 
painting in Figure 3-4. The block on the left is taken from the inpainting results without applying 
boundary condition equations at the borders of the image. The block on the right is taken from the 

inpainting results achieved with utilizing boundary condition equations at the borders of the 
image. Notice that the pixels at indices ሺ2,9ሻ and ሺ9,6ሻ of the left block correspond to cracks that 
are resolved in the block on the right. The block is located at the bottom right of the input image. 

Graphic created in MATLAB with imagesc function [18]. 

 Figure 3-6 shows a set of three scanned images of damaged photographs in the first 

column and the results from applying automatic damaged regions detection in the third column. 

To generate a mask that is thick enough to encompass the damaged regions, the program tends to 

over detect. This is particularly troublesome for images of people. Processing the damaged 

photographs in the same manner as was done in Figure 3-1 through Figure 3-3 does produce 

small visual improvements from the original scratched photographs, however, the blurred 

appearance around the eyes and mouths is unsuitable for portrait restoration. 

 Although not ideal, we experimented with manually adjusting the mask after running the 

automatic detection algorithm to prevent unfavorable results. By filling portions of the mask that 

merely outlined damage and removing parts of the mask that interfere with regions that should 

remain intact, the restoration results are much more appropriate. The last column of Figure 3-6 
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shows the tweaked mask with the inpainting results in the second column. Although this type of 

intervention seems unsuitable for a method that seeks to limit manual mask creation, it does 

inspire potentially automatic algorithms. Also, we found that in cases where manual mask 

creation is necessary, it makes preparing the inpainting mask faster and more precise. We believe 

that with more experimental exploration and mathematical thoughtfulness a successful hybrid 

method that further diminishes manual detection is possible for many different types of images 

containing damage that is widespread or difficult to represent. 
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Figure 3-6 Three sets of images corresponding to three damaged photographs3 [22] [23] [24]. 
From left to right: Input damaged photograph, restoration results from using the partially user 
dependent method of mask creation method, automatic damaged regions detection results, and 

modified mask which is used to inpaint the damaged photograph in the first column. 

 
3 Torn Victorian Photo Pre-restoration provided by John Butler of PhotoValet is used with permission. Cropped and 
resized from original. 
Photo booth portrait of a chubby man 2: Dad 1940 by simpleinsomnia is licensed under CC BY 2.0. Cropped and 
resized from original. 

Damaged 
photographs 

Restoration results Detected damage 
mask 

Adjusted masks 
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3.4 Utilizing the Inverted Laplacian Magnitude for Image Compression in 
Damaged Regions Inpainting Tasks 

 In this chapter, inpainting tasks entail detecting damage and creating a mask based on the 

location of this damage. The mask indicates where the inpainting algorithm should be applied 

within the damaged image. When an image is impervious to this detection method because it is 

splotched and dotted, we borrow a key tool from the compression methods examined in section 

2.4. The techniques discussed in [13] and [14] employ inpainting with homogeneous diffusion 

and utilize the inverted Laplacian magnitude in their compression algorithm. An image that is a 

candidate for combining our detection and inpainting goals with the image decoding inpainting 

methods suggested in [13] and [14] is shown in Figure 3-7 [25]. The reason for this is because 

much of the damage is characterized by dots and splotches, rather than creases or tears. Zooming 

in on damage that appears line-like shows that the lines are comprised of dots, Figure 3-8. 

Nonetheless, there are damaged portions of the image that are comprised of lines. When this is 

the case, our proposed automatic SVD-based method of inpainting mask creation fails as can be 

seen in Figure 3-9. 

 
Figure 3-7 Image with damage that is characterized by light colored spots throughout and 

concentrated over the face of the subject [25]. 
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Figure 3-8 Input image with selected region inscribed in a red square and the corresponding 

close-up revealing that the damage is characterized by dots and splotching. 

 
Figure 3-9 SVD-based automatic detection and inpainting results. Notice the blurred edge of the 

girl’s right cheek, chin, and eyes in part (e). 

(a) Input image (b) Automatic detection 
mask 

(c) Modified mask 

(d) Restoration results 
using thresholding based 
on damaged pixel values 

(e) Restoration results 
using the automatically 

generated damage 
detection mask in (b) 

(f) Restoration results from 
using the modified 

inpainting mask in (c) 



 

32 

 

 
Figure 3-10 Inverse Laplacian magnitude automatic detection mask results. The edges of the 

girl’s right cheek, chin, and eyes are preserved. 

 Unlike the authors of [14] and [13], we do not have access to the original image, referred 

to as ࢌ in [14], in our work and therefore we are unable to use the same mean square error, MSE, 

approach for discerning reconstruction error. We have therefore limited our analysis to visual 

improvements. The inpainting mask that we created using the Laplacian magnitude did a good 

job of preserving edges in the original image although it did cause blurring in regions that were 

(a) Input image (b) Automatic detection 
using inverse Laplacian 

magnitude 

(c) Modified inverse 
Laplacian magnitude 

mask 

(d) Inverse Laplacian 
magnitude before 

thresholding is applied 

(e) Restoration results 
using the automatic mask 

in (b) 

(f) Restoration results 
using the modified mask 

in (c) 
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not damaged. We believe the successful preservation of edges is due to the way the threshold 

inpainting mask straddles both sides of an edge. Figure 3-11 (a) shows a magnified view, right, 

of the inpainting mask on the left. Part (b) shows the same selected region but with the results 

from applying Sobel edge detection to the damaged input image in yellow. The double striping 

can be readily observed, particularly where the girl’s right cheek fronts her hair and the image 

background, even amidst heavy damage. 

 

Figure 3-11 Demonstration of how the Laplacian magnitude mask creates lines that straddle the 
edges rather than directly on top of the edges. Sobel edge detection in the image on the right 

indicates the location of the edge that the mask in the image on the left outlines. 

 

(a) Close-up of selected region 
showing edge in inpainting mask 

(b) Close-up of Sobel edge 
detector result 
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Figure 3-12 Raw results from using the SVD detection and inverted Laplacian magnitude 

detection (without mask modifications). The two top images demonstrate the difference between 
the two detection methods. The top image on the left shows blurring in areas where edges exist 
and should be preserved whereas the top right image shows edges remain uncompromised. The 

two bottom images are the inpainting masks detected using SVD and Laplacian magnitude, 
respectively. Zoom in for better viewing. 

 There is certainly a compromise between image quality and wholly automatic damaged 

regions detection. For example, in order to successfully detect the damaged regions in an old 

photograph without user intervention, the threshold for comparison may be such that the 

algorithm over-detects. This means that although the program capably locates the regions in need 

of inpainting, it may also include non-damaged areas. Since we use the automatically detected 

regions as inpainting masks when implementing restoration, the repaired image may appear 
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foggy or grainy in places that were previously clear. This issue occurs commonly around the 

eyes in images of people. In the future, we would like to create a program, that successfully 

identifies damaged regions, produces a mask, and applies inpainting techniques with minimal 

human intervention. 

3.5 Conclusion 

 After researching and experimenting with digital color image inpainting techniques, we 

developed the foundations of an automatic damaged regions detection algorithm. Desiring to find 

a technique that performs well independent of user intervention, we utilized singular value 

decomposition with the reduction suggested in [17]. Once the damaged region is detected, the 

damaged image and the detected region matrix are passed into a function that treats the detected 

region as a mask and applies diffusion based inpainting. We experimented with various diffusion 

and TV parameters, patch sizes, and similarity thresholds. We built a program capable of 

detecting horizontal, vertical, and diagonal damage, and utilized the Laplacian magnitude of the 

input image to pinpoint where edge preservation is necessary based on the compression methods 

in [13] and [14]. We then applied inpainting techniques accordingly. Although there is plenty of 

work being done in the field of non-machine learning-based inpainting, we would like to 

continue exploring image restoration techniques, particularly those that do not involve or require 

user intervention.
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 4 Machine Learning-Based Image 
Restoration 

 Recent machine learning image restoration approaches tend to favor either generative 

adversarial networks (GANs) [26] [27] [28] [29] [30] [31] or encoder-decoder CNNs [32] [33] 

[34] with residual learning. GANs train two networks simultaneously; a generative model and a 

discriminative model. The goal of the generative model is to generate samples that are 

indistinguishable from the training set and the goal of the discriminative model is to correctly 

determine if the sample came from the generative model or the training set. Their adversarial 

relationship ensures that the generator produces images that are globally and locally believable 

so that the discriminator fails, meanwhile, the discriminator becomes pickier to overcome the 

continually improving generator output images.  

 Encoder-decoders are two-step models similar to autoencoders. Just as an autoencoder 

tries to reconstruct its input, encoder-decoders can be used to generate an output that is nearly 

identical to its input. In image restoration, the goal is to train an encoder-decoder to output the 

input image sans the missing or noisy regions. It has been shown that utilizing skip connections 

in an encoder-decoder network is beneficial in segmentation and inpainting tasks [3] [32] [33] 

[34]. Skip connections concatenate weight maps produced in the encoder stage to their mirrored 

counterpart weight maps in the decoder stage. This encourages preservation of local features and 

structures from the damaged image in the predicted image. In response to general image-to-

image translation problems, in which the input and output have the same underlying structure, 
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[35] employs conditional GANs and encoder-decoders by designing a U-Net-like generator that 

uses skip connections. We will discuss the U-Net in detail in chapter 5. 

4.1 Loss 

 As mentioned earlier, image-to-image translation tasks often require that the input and 

output images be structurally identical. Image super resolution, style transfer, and restoration are 

examples of image-to-image translation that further require similarity in features like color, 

texture, and contour. Training a CNN with per-pixel loss may improve objective metric values, 

such as peak signal to noise ratio (PSNR) and ℓଵ and ℓଶ losses yet fail to produce perceptually 

satisfactory results. In image inpainting, the goal is to restore missing or damaged regions, of 

which there could be many possible suitable solutions. Inpainting is therefore an ill-posed 

problem and it can be difficult to measure success using objective metrics. Fortunately, there has 

been much research within the last five years to mathematically incorporate features that are 

perceptually significant to the human visual system (HVS) [36] [37].  

 Perceptual quality can be broken down into two components: content and style. Image 

content representation describes the global features of an image, whereas style representation 

describes the local features of an image such as texture and color. By examining feature 

responses in certain layers of a CNN trained for object recognition, Gatys et. al. determined that 

content and style image representations are independent of each other and therefore can be 

managed separately [36]. The specific CNN used in their work is the highly successful VGG19 

network [38] trained on the ImageNet dataset [39] for object recognition. High level features of 

the original image and the predicted image are obtained by exposing each one to selected layers 

of the VGG19 network.  
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 For content reconstruction, the goal is to minimize the difference between the two feature 

response maps generated by the original image and the predicted image. Using standard error 

back propagation, the updated predicted image will eventually take on values that trigger the 

same feature responses as the original image. Given a pretrained CNN, ߶, the content loss 

associated with original (input) image ܫ and predicted (output) image ܲ at layer ݈ of ߶ is 

,ܲ,ܫ௖௢௡௧௘௡௧ሺܮ ݈ሻ ൌ
ଵ

௠௡௖
‖߶௟ሺܲሻ െ ߶௟ሺܫሻ‖ଶ,	 (4.1) 

where ݉ ൈ ݊ is the shape of the feature map, ܿ is the number of feature maps (or channels) in 

layer ݈, and ߶௟ሺܲሻ and ߶௟ሺܫሻ are the feature responses from processing ܲ and ܫ, respectively. 

 Image style representation is described by the correlations between the feature responses 

in the same layer [36]. For an image ܫ, these correlations are obtained by finding the Gram 

matrix of the feature responses, ߶௟ሺܫሻ, in a specific layer ݈ of network ߶. To calculate the style 

loss associated with the predicted image ܲ, the set of feature responses, ߶௟ሺܲሻ, is reshaped from 

an ݉ ൈ ݊ ൈ ܿ matrix to a ܿ ൈ ݉݊ matrix, ߰௟ሺܲሻ. Thus, the Gram matrix, 

௟ሺܲሻܩ ൌ
ଵ

௠௡௖
߰௟ሺܲሻ்߰௟ሺܲሻ,	 (4.2) 

will be of shape ܿ ൈ ܿ and the style loss associated with original image ܫ and predicted image ܲ 

at layer ݈ of ߶ is 

,ܲ,ܫ௦௧௬௟௘ሺܮ ݈ሻ ൌ
ଵ

௖మ
௟ሺܲሻܩ‖ െ 	.ሻ‖ଶܫ௟ሺܩ (4.3) 

 As mentioned in section 2.3, TV regularization is used to suppress noise while preserving 

edges in noisy images. Unsurprisingly, TV loss is used in image-to-image translation tasks to 

produce smooth predicted images. The TV loss for the predicted image ܲ is 
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௧௩ሺܲሻܮ ൌ
ଵ

௠௡௖
∑ ට൫ ௜ܲାଵ,௝ െ ௜ܲ,௝൯

ଶ
൅ ൫ ௜ܲ,௝ାଵ െ ௜ܲ,௝൯

ଶ
௜௝௞ .	 (4.4) 

The ground truth image is not included in the calculation since TV loss solely penalizes the 

amount of noise in the generated image with no comparison to the original image. We utilize TV 

loss in our region hiding inpainting system to compare the boundary of the inpainted regions 

with the one-pixel thick set of valid pixels surrounding the inpainted region. 
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 5 Region Hiding for Image Inpainting 
via Single-Image Training of U-Net 

5.1 Introduction 

 Inspired by the impressive performance of CNNs in inpainting tasks coupled with an 

awareness of the inherent difficulties associated with the creation and management of a large 

data set of images, we desired to explore how a specific encoder-decoder CNN, the U-Net [3], 

would perform on inpainting tasks when trained on a single image; the very image to be 

inpainted. Our single-image trained model not only performs well when compared to multi-

image trained inpainting systems, but also lessens reliance on large datasets of possibly 

unsuitable images. The results also indicate how effective the combination of U-Net with partial 

convolutional layers and skip connections is [34]. We will refer to the network architecture 

proposed in [34], which we use in our work, as partial convolutional neural network (PConvNN). 

 What makes our inpainting system unique is that it relies solely on one image rather than 

a database of images. Training is exceptionally fast compared to other machine learning 

inpainting systems that have similar architecture but train on thousands of images [32] [33] [34]. 

Although a fair method-to-method comparison is not possible, ours being the only machine 

learning system that we are aware of to use solely one image for training, we have validated our 

region hiding method by comparing our results with the results generated from applying a 

pretrained, third-party implementation of [34], which was trained on the ImageNet data set [39], 

and a third-party implementation of PatchMatch [10], to the same set of target images [40] [41] 

[42] [43] [44]. The ImageNet data set contains over fourteen million images from a variety of 
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categories. This makes the associated pretrained model an appropriate choice for comparing our 

single-image trained PConvNN with the multi-image trained PConvNN. 

 In this chapter, we explain what training on a single image using region hiding means, the 

model architecture used, how we went about implementing the model, and our results. Lastly, we 

suggest potential applications and discuss future research stemming from this work. 

5.2 Approach 

 The novel contribution that we describe in this paper is conceptual, rather than 

computational, although it does affect computational efficacy and will undoubtedly be of value 

in inpainting tasks as well as in other signal processing domains. We do not claim to offer a new 

implementation. Rather, we have thoughtfully leveraged a successful, previously proposed multi-

image inpainting network [34] to accomplish our inpainting goals pertaining to single images. In 

this section, we describe how and why various components are used, including architecture. 

5.2.1 Region Hiding 

 We refer to our novel contribution as region hiding because the algorithm hides 

nondamaged regions from the network. Region hiding enforces that the network be trained to 

make predictions based on what it sees in the current training image, as well as what it has seen 

in previous training images, i.e., in the various transformations of the damaged image. Nuances 

associated with the structures, textures, and overall cohesion of elements within that specific 

image are learned. The network is not rewarded for using damaged pixels to predict hidden 

regions. 



 

42 

5.2.2 Set-Up 

 There are three important component images that correspond to a test image. First, the 

ground truth image without damage or masking, ܫ଴. Second, the damaged version of ܫ଴, which 

has had damage artificially applied. We will call this damaged image ܫ. A sample set of ܫ଴ and ܫ 

is shown in the first two images of Figure 5-1. Third, the masked version of ܫ, which we will call 

 ெ depending onܫ however, there will be several versions of ,ܫ ଴ and oneܫ ெ. There is oneܫ

augmentation specifications. A set of ܫெs corresponding to the sample in Figure 5-1 is shown in 

the last column of Figure 5-2. 

 
Figure 5-1 From left to right, ground truth image4 (ܫ଴), damaged image (ܫ) with damage shown 

as white, and binary mask representing locations of artificially damaged pixels in black. 

 

 
4 Color Block Living by Sheila Sund MD is licensed under CC BY 2.0. Cropped and resized from original. 
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Figure 5-2 Two instances of transformation and mask generation. From left to right, transformed 
damaged image, mask such that damage is not included, and transformed damaged image with 

mask applied (I୑). 

 GANs are not suited for single-image inpainting since both the generator and the 

discriminator must compete while handicapped by identical masked damaged images. A GAN 

that is trained on a single image will insist that the damage is part of the signal, not noise, 

because the generator has been repeatedly awarded by the discriminator for maintaining the 

damaged regions in its predictions. An encoder-decoder system is ideal for single-image 

inpainting because precise mask placement can be used to prevent the model from actively 

making predictions about the damaged region until the testing phase. 

 Although we could not find publications pertaining to single-image training in machine 

learning-based inpainting, the authors of [45] likewise do not train on a large dataset of images. 

However, they take this notion a step further and do not train on the damaged image either. Our 

method differs in that we do indeed train on an image, as we do not set network parameter priors. 

Our method encourages the network to learn the act of inpainting as it pertains to a specific 
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image. Nonetheless, we draw the same conclusion that CNNs are powerful tools for image 

restoration due to their architecture, independent of training on large image datasets. 

 We chose to adopt the architecture proposed in [34] because it offers solutions to 

challenges commonly encountered in both traditional and machine learning-based inpainting 

approaches. Specifically, the system is capable of training on images with irregular masks and 

placeholder values are not required to explicitly inform the model where to inpaint. The novel 

contribution proposed in [34] is the development and implementation of partial convolutions to 

fill masked regions. The inspiration for utilizing masked convolutions and renormalization 

comes from segmentation-aware convolutional networks [46]. The authors of [34] refer to the 

combination of segmentation-aware convolution [46] and automatic mask updating as the partial 

convolutional layer. 

 Let ܨ௟ሺ݅ሻ be a ݇ ൈ ݇ receptive field centered at position ݅ in the feature map ܨ௟ in layer ݈ 

and let ܯ௟ሺ݅ሻ be the associated binary mask of the same size in which a value of 0 indicates a 

masked pixel and a value of 1 indicates an unmasked (unhidden) pixel. The output from 

performing partial convolution at this receptive field is, 

௟݂ାଵሺ݅′ሻ ൌ ൝
்ܹ൫ܨ௟ሺ݅ሻ ௟ሺ݅ሻ൯ܯ⊙

௞మ

∑ெ೗ሺ௜ሻ
൅ ܾ, if	∑ܯ௟ሺ݅ሻ ൐ 0

0, otherwise						
, (5.1) 

where ⊙ indicates elementwise multiplication (Hadamard product), ∑ܯ௟ሺ݅ሻ is the number of 

unhidden pixels in the receptive field, ܹ is the weight matrix, and ܾ is the bias term for the 

feature map. The left side of (5.1), ௟݂ାଵሺ݅′ሻ, is the raw output from the convolution. The resulting 

value from applying the activation function to this raw output is assigned to the neuron located at 



 

45 

݅′ of the feature map ܨ௟ାଵ in layer ݈ ൅ 1. The partial convolutional layer is complete after the 

mask updating step, 

݉௟ାଵሺ݅′ሻ ൌ ൜
1, if	∑ܯ௟ሺ݅ሻ ൐ 0
0, otherwise						

, (5.2) 

where ݉௟ାଵሺ݅ᇱሻ will be assigned a value of 1 if the calculation of ௟݂ାଵሺ݅′ሻ is based on at least one 

unhidden input, therefore implying that there is now a valid pixel value at location ݅ᇱ in ܨ௟ାଵ. The 

updated mask travels with the updated image throughout the network. The number of masked 

pixels will eventually decrease to zero and the mask will contain all ones by the time the bottle 

neck between the encoder and the decoder is reached, assuming that the input image contains at 

least some unhidden pixels. 

5.2.3 Data Augmentation 

 The U-Net is an increasingly popular encoder-decoder CNN that has been highly 

successful in image segmentation and inpainting. U-Net is often employed in projects suffering 

from a small number of training images. Initially, U-Net was introduced as a robust, fully 

convolutional network designed for various biomedical image segmentation tasks [3]. Each task 

discussed in [3] requires the network to train on very few images; one of which contains a dataset 

with a mere 20 training images. The authors implement elastic deformations to augment the 

available dataset, thus encouraging the network to become familiar with deformations that are 

possible in tissues and neuronal structures which may not be explicitly present in the training set. 

Given that we are training on a single image, data augmentation is especially important. 

 We utilize rotations, shifts, and horizontal flips applied to the damaged input image to 

impose diversity in the training images. Keras [47] offers a helpful set of tools to facilitate real-
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time data augmentation in its ImageDataGenerator class. Although a true application of the 

inpainting system would imply that the input image has been genuinely damaged in a way that 

the missing pixel values are unknown, we apply artificial damage to the original, ground truth 

image, so that we can accurately measure success. To preserve the locations of these artificially 

damaged regions from one training image to the next, both the damaged image and the damage 

are transformed simultaneously. Next, a random mask that excludes the damaged pixel locations 

is applied to each training image as shown in Figure 5-2. 

 There is no overlap between the mask and damage. When the mask is subjected to the 

mask updating step, the damage is not included. The model is designed to predict the pixel 

values of the hidden regions distinct from the way that the model predicts the pixel values of the 

unmasked regions (which includes damage). This purposeful bias is accomplished in the loss 

function. 

5.2.4 Loss 

 Rather than determine a unique set of loss term coefficients for each image that needs to 

be inpainted, we used the loss function described in [34], which the authors obtained by 

performing a hyperparameter search on 100 validation images taken from the ImageNet, Places2, 

and CelebA-HQ datasets. The authors use an effective total loss function that embodies pixel loss 

within and outside of the masked regions (ܮ௛௜ௗௗ௘௡ and ܮ௩௔௟௜ௗ, respectively), perceptual and style 

losses [36] (ܮ௣௘௥௖௘௣௧௨௔௟ and ܮ௦௧௬௟௘) dependent on ImageNet-trained VGG16 [38] feature space, 

and total variation loss [37], ܮ௧௩. Although we present the ℓଶ losses for content and style in 

equations (4.1) and (4.3), in section 4.1, in our work each loss term is calculated as an ℓଵ loss as 

in [34]. 
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௧௢௧௔௟ܮ ൌ ܽଵܮ௩௔௟௜ௗ ൅ ܽଶܮ௛௜ௗௗ௘௡ ൅ ܽଷܮ௣௘௥௖௘௣௧௨௔௟ ൅ ܽସܮ௦௧௬௟௘ ൅ ܽହܮ௧௩. (5.3) 

Here, the ܽ௜s are the weights associated with each loss term. 

 We discovered that although perceptual and style losses do not noticeably improve the 

appearance of predicted images for some highly successful inpainting networks such as [29], 

they are indeed essential components of our loss function. The importance of these loss terms 

can be qualitatively appreciated in section 5.5.3, which includes ablation study findings. 

5.2.5 Architecture 

 The name of the U-Net comes from its symmetrical U-shaped architecture. The U-Net-

like PConvNN consists of an encoder stage and a decoder stage, each of which is comprised of 

stacked partial convolutional layers. The ݉ ൈ ݊ ൈ 3 masked damaged image, ܫெ, is input into the 

network which starts with a convolutional layer that uses either zero padding or partial 

convolution based padding [48] and horizontal and vertical strides of size 2, to output a 

collection of c feature maps that are of reduced length and width. This process continues until a 

bottle neck is reached at which point the decoder stage begins. Skip connections bridge mirrored 

layers by concatenating encoder stage output channels to decoder stage input channels after 

nearest neighbor upsampling. This implies that the network will model ݃ሺܫሻ ൌ ݄ሺܫሻ െ  ݃ where ,ܫ

is the network function into which the damaged image, ܫ, is input, and ݄ሺܫሻ ൌ ଴ܫ ൅  .ideally ,ܫ

The last layer of the PConvNN concatenates the network input to the output of the second to last 

layer, applies the last partial convolution layer, applies sigmoid activation, then outputs the 

result. Table 5-1 shows the architecture of the PConvNN that we employed. We have included a 

schematic representation in Appendix D. 
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Table 5-1: Partial Convolutional Network Architecture 

Layer Type 
Layer output maps 

(count and size) 

Kernel 

size 

S
tride 

U
psam

ple 

Activation 

In Input 3 512×512 -- --      --  -- 

1 PConvolution 64 256×256 7 × 7 2       --  ReLU 

2 PConvolution 128 128×128 5 × 5 2       --  ReLU 

3 PConvolution 256 64×64 5 × 5 2       --  ReLU 

4 PConvolution 512 32×32 3 × 3 2       --  ReLU 

5 PConvolution 512 16×16 3 × 3 2       --  ReLU 

6 PConvolution 512 8×8 3 × 3 2       --  ReLU 

7 PConvolution 512 4×4 3 × 3 2       --  ReLU 

8 PConvolution 512 2×2 3 × 3 2       --  ReLU 

9 Connect to 7 

PConvolution 

1024 

512 

4×4 

4×4 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

10 Connect to 6 

PConvolution 

1024 

512 

8×8 

8×8 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

11 Connect to 5 

PConvolution 

1024 

512 

16×16 

16×16 

  

3 × 3 

--       2 

1       -- 

  

LeakyReLU(0.2) 

12 Connect to 4 

PConvolution 

1024 

512 

32×32 

32×32 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

13 Connect to 3 

PConvolution 

768 

256 

64×64 

64×64 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

14 Connect to 2 

PConvolution 

384 

128 

128×128 

128×128 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

15 Connect to 1 

PConvolution 

192 

64 

256×256 

256×256 

  

3 × 3 

--       2 

1       --  

  

LeakyReLU(0.2) 

16 

Out 

Connect to In 

PConvolution 

67 

3 

512×512 

512×512 

  

3 × 3 

--       2 

1       --  

  

Sigmoid 

5.3 Implementation 

 Like [34], we use He uniform weight initialization [49] and LeakyReLU with ߙ ൌ 0.2 for 

the nonlinear activation function. We also scale partial convolutional layer outputs at individual 
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receptive field (sliding window) locations similarly by multiplying the convolution output by the 

ratio of the total number of pixels in the receptive field to the number of unhidden pixels in the 

receptive field as represented in (5.1). If there are many masked pixels in the receptive field, then 

the ratio will be large to compensate for the few nonzero values in ܨ௟ሺ݅ሻ  ௟ሺ݅ሻ, and if there areܯ⊙

many unhidden pixels, then the ratio will appropriately be closer to one. This ratio prevents 

distortion resulting from high variance among values in the same feature map. 

 In practice, we found that an alternative scaling factor based on the size of the entire 

mask in layer ݈ and the number of nonzero pixels in the entire mask in layer ݈, generated more 

structurally cohesive results. Changing the locally calculated ratio in (5.1) to this globally 

calculated scaling factor gives us: 

௟݂ାଵሺ݅′ሻ ൌ ቊ
்ܹ൫ܨ௟ሺ݅ሻ ௟ሺ݅ሻ൯ܯ⊙

௠௡

∑ெ೗
൅ ܾ, if	∑ܯ௟ ൐ 0

0, otherwise	
, (5.4) 

where ݉ ൈ ݊ is the size of the mask in layer ݈ and ∑ܯ௟ is the sum of all pixels in the mask in 

layer ݈, i.e., the number of unhidden pixels in the feature map, ܨ௟. Rather than dividing the size of 

the receptive field centered on ݅ by the number of unmasked pixels in the receptive field, we now 

divide the size of the entire mask in layer ݈ by the number of unmasked pixels in the entire 

feature map in layer ݈. We provide the results from using both scaling factors in section 5.5. 

 Batch normalization is unnecessary for the encoder stage of our network since a batch 

consists of shifts and rotations of the same damaged image with varying amounts of hidden 

pixels. Applying normalization would produce skewed values for the empirical mean and 

standard deviation associated with an individual batch of images and later influence the intensity 
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of the predicted image. However, batch normalization is used in the decoder stage as we found 

that images with heavy damage tended to produce bright images. To prevent bright image 

predictions, we assigned the mean of the nondamaged pixels to the damaged regions as described 

in (5.5) through (5.7). 

 There are two types of masks to be aware of; the artificially applied damage mask, D, and 

the hidden region mask, M. The damage mask is what is used to create the damaged image, I. 

When D is generated, the damaged regions are assigned a value of 0 and the nondamaged regions 

are assigned a value of 1. An intermediate image, ܫመ, is created by elementwise multiplication of 

the damage mask and the original image: 

መܫ ൌ ܦ ⊙ 	.଴ܫ (5.5) 

The number of damaged pixels in a channel is calculated by subtracting the number of 

nondamaged pixels from the total number of pixels: 

݀ ൌ ݉݊ െ ∑஽

ଷ
,	 (5.6) 

where m and n are the length and width of the input image and ∑ܦ is the sum of all pixel values 

in the damage mask, i.e., the number of nondamaged pixels. This sum is divided by 3 since there 

are 3 color channels and we are interested in finding the mean of the nondamaged pixels for each 

color channel independently. 



 

51 

 The mean of all nondamaged pixels in a specific color channel is calculated by dividing 

the sum of all nondamaged pixel values by the number of nondamaged pixels. This is 

represented in (5.7). 

஼ሺ݅ሻܫ ൌ ቐ
መ஼ܫ∑ െ 255݀
݉݊ െ ݀

, 	 if	ܦ஼ሺ݅ሻ ൌ 0

,መ஼ሺ݅ሻܫ 	 otherwise			
	 (5.7) 

The coefficient 255 accounts for the fact that the pixel values in ܫመ are in the range 0 to 255: 

መሺ݅ሻܫ ∈ ሾ0,255ሿ. The subscript ܥ indicates image color channel: 1, 2, or 3, corresponding to red, 

green, blue, respectively. The variable, ݅, represents a tuple corresponding to pixel location in the 

C-th channel. Adding the three channels together gives the final damaged image, ܫ. 

 It would be difficult to enforce effective batch normalization without making 

accommodations either by modeling and estimating damaged pixel count from layer to layer or 

turning batch normalization on then off in the encoder stage after a specific number of epochs as 

in [34]. We found adjusting the damaged pixel values per (5.7) to be an adequate solution. 

5.4 Software and Hardware 

 We trained each unique image network on an NVIDIA Tesla V100 GPU. Each network 

takes about five hours to train with a training set of 1,000 identical images (the single damaged 

image cloned 999 times) of size 512 by 512, a batch size of 4, and 40 epochs with 1,000 steps per 

epoch. The most visually pleasing image result by the 40th epoch is used. The U-Net-like 

architecture and partial convolution layers are written in Python to leverage Keras [47] 

operations and network layers with a Tensorflow [50] backend. We used a third-party 

implementation [51] of the PConvNN with stacked partial convolutional layers and skip 
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connections as proposed in the NVIDIA paper [34]. This provided us with a working framework, 

which we then modified to suit our investigation. 

 The damage and mask elements were created using OpenCV [52]. We expanded upon a 

suitable mask generator function [53] to create a NumPy array of random shapes and lines. 

Augmentation and random mask generation are not performed before run-time. Each time a 

batch of images is loaded, the image data generator applies a unique set of transformations and a 

random hidden regions mask to each image in the batch. 

5.5 Results 

 Peak signal to noise ratio (PSNR), structural similarity index (SSIM), and other 

restoration quality metrics are helpful but limited in their ability to indicate true inpainting 

success. The goal of inpainting is to achieve visually satisfactory results and there are primarily 

two options: 1) the output image must look realistic but does not have to match the truth, and 2) 

the output image must be as close to the truth as possible. In other words, given an image of a 

building with a missing region that encompasses a window, success may be defined as having 

the true window restored, or success may be defined as having a window that is believable, 

though not the true window, projected into the region. Nonetheless, we use common inpainting 

metrics, PSNR and SSIM, to quantitatively compare methods. 

 To compare our system with a multi-image trained network, we used weights from a 

third-party implementation [51] of the original PConvNN proposed in [34]. The weights were 

generated from training the PConvNN on ImageNet [39]. One difference between the original 

PConvNN and the third-party implementation of PConvNN is that the original network employs 

He kernel weight initialization [49] whereas the third-party network uses Glorot uniform weight 
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initialization [54]. Experimentally, we found no significant difference between results from using 

He initialization and results from using Glorot initialization. Since the third-party 

implementation is trained on ImageNet using specific parameters, we adjusted our network 

parameters accordingly for generating PConvNN results. 

 To compare our system with a non-machine learning method, we used a third-party 

implementation [55] of PatchMatch based on the original algorithm proposed in [10]. It is 

important to note that inpainting results generated by the third-party implementations are not 

exact representations of the original PConvNN and PatchMatch results. However, they are good 

implementations nonetheless and effectively allow us to provide a relatively fair, albeit 

imperfect, comparison. Figure 5-3 shows results from performing image restoration on five 

images using four methods: 1) PM, 2) PConvNN trained on ImNet, which we will shorthand 

PConv(ImNet), 3) PConvNN trained on the single damaged image using our region hiding 

technique, partial convolution based padding [48], and local scaling of equation (5.1), which we 

will shorthand PConv(1) Local, and 4) PConvNN trained on the single damaged image using our 

region hiding technique, zero padding, and global scaling of equation (5.4), which we will 

shorthand PConv(1) Global. 
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Figure 5-3, Inpainting results for five images5. From left to right, (a) damaged images, (b) 

inpainting results from applying PatchMatch [10], (c) inpainting results from applying multi-
image trained PConvNN [34], (d) inpainting results from training PConvNN on the single 

damaged image using our region hiding technique, partial convolution based padding [48], and 
local scaling, (e) inpainting results from training PConvNN on the single damaged image using 

our region hiding technique, zero padding, and global scaling, and (f) ground truth image. 

 

 
5 Color Block Living by Sheila Sund MD is licensed under CC BY 2.0. Cropped and resized from original. 
Departing Storm by Sheila Sund MD is licensed under CC BY 2.0. Cropped and resized from original.  
BNSF Switching Yard by CJ Oliver is licensed under CC BY 2.0. Cropped and resized from original. 
Autumn Grove by Sheila Sund MD is licensed under CC BY 2.0. Cropped and resized from original. 
Colours by Tomasz Baranowski is licensed under CC BY 2.0. Cropped and resized from original. 

(a) Damaged 
images 

(b) PM (c) PConv  
(ImNet) 

(d) PConv(1) 
Local 

(e) PConv(1) 
Global 

(f) Ground truth 
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5.5.1 Quantitative 

 We noticed that the inpainting results from the third-party version of PConvNN suffered 

from black and white patches in the upper corners. In an effort to appropriately and fairly 

consider the original PConvNN, we compensated for the black and white artifacts in the corners 

of the ImNet trained PConvNN results by slightly cropping the images to exclude these regions 

when calculating the PSNR and SSIM for each method’s output. Although the values in Table 

5-2 were calculated after cropping, the images in all figures of this dissertation are not cropped 

so that the reader may view entire images. 

Table 5-2: Quantitative Inpainting Results 

  Damaged 

image, I PM PConv 
(ImNet) 

PConv(1) 
Local 

PConv(1) 
Global 

PSNR Building 16.76 17.88 17.93 18.78 19.72 
 

Mountains 23.34 24.11 24.86 22.65 24.44 
 

Switch Yard 20.66 24.92 23.87 24.48 24.83 
 

Trees 21.78 21.68 19.90 20.28 20.52 
 

Bird 27.40 35.01 32.39 30.79 33.83 
SSIM Building 0.74 0.81 0.82 0.83 0.85 

 
Mountains 0.94 0.95 0.93 0.90 0.93 

 
Switch Yard 0.80 0.82 0.80 0.82 0.82 

 
Trees 0.90 0.91 0.88 0.86 0.88 

 
Bird 0.93 0.99 0.93 0.96 0.98 

 Table 5-2 shows the PSNR and SSIM scores for each method on the five images in 

Figure 5-3. It is important to note that the damaged images used to calculate the associated 

entries in Table 5-2 were created using (5.7), therefore it is possible for the damaged image to 

seemingly outperform the computational restoration methods quantitatively. However, 

qualitatively the results favor the computational restoration methods. The PSNR and SSIM 
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values for each method are comparable despite the varied appearances of their associated images. 

These differences can be better appreciated in Figure 5-3 and Figure 5-4. 

5.5.2 Qualitative 

 Although PM generally ranks above the other inpainting methods quantitatively, we 

found that PSNR and SSIM values did not coincide with satisfactory visual results. We have 

included magnified damaged regions and results of each method for three different images in 

Figure 5-4. PSNR does not evaluate perceptual quality and therefore predictions that appear 

disjointed may have a greater PSNR than predictions that appear more natural as can be observed 

in the second set of images in Figure 5-4. PM scores highest yet the train tracks and train are 

skewed. PConv(1) Global does a much better job of maintaining structural cohesion. 

 For some images, there appears to be a trade-off between structural continuity and color 

consistency within the predicted image. For example, in the first set of images in Figure 5-4, the 

PConv(1) Global result is structurally cohesive but not as successful at capturing accurate color 

representations as PM and PConv(ImNet) results. Unfortunately, batch normalization did not 

prevent this discoloration from occurring. The PConv(1) Local result falls between the two 

extremes by providing realistic, continuous colors and passable structure. We found that 

generally, PM and PConv(ImNet) tend to favor the style representation of an input image in their 

predictions whereas PConv(1) Global tends to favor the content representation of an input image 

See our discussion of style and content in section 4.1. 
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Figure 5-4 Three sets of damaged images with selected regions outlined in green. Close-up 

images from left to right: selected damaged regions, PM results, PConvNN trained on ImNet 
results, PConvNN trained on single image using PConv padding and local scaling, PConvNN 
trained on single image using zero padding and global scaling, and ground truth. Zoom in for 

better viewing. 

Damaged images with 
selected regions outlined 

in green 

PM PConv 
(ImNet) 

PConv(1) 
Local 

PConv(1) 
Global 

Ground 
truth 

Close-ups 
of damaged 

regions 
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5.5.3 Ablation Study 

 Having little to no style loss generates blurry results as can be observed in column (c) of 

Figure 5-5. Lack of perceptual loss produces results that are grainy and seem to repeat a grid 

pattern within the damage, column (b) of Figure 5-5. We did not notice much difference between 

results with no total variation loss and increased total variation loss although the increased total 

variation loss occasionally produced results that were less texturally realistic. Generally, utilizing 

all loss terms produces results that are less blurry, less repetitive, and more realistic. 

 
Figure 5-5 Columns from left to right: Close-ups of selected damaged regions, results from 

training without perceptual loss, results from training without style loss, results from training with 
all loss terms, corresponding ground truth regions. Zoom in for better viewing. 

5.6 Conclusion 

 Although it may seem excessive to train an entire CNN on a single image to inpaint that 

image, there are some reasonable motivations to consider. For example, art restoration when the 

(a) Close ups of 
damaged regions 

(b) No perceptual 
loss 

(c) No style loss (e) Ground truth (d) All loss terms 
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artist’s work is very stylistic. This situation would require a relatively small data set of images of 

the artist’s intact paintings as well as an image of the damaged painting. Another potential use 

for region hiding is object removal, for which only two images are necessary. Furthermore, the 

benefits of exploring a new concept may launch ideas in other domains. 

 We provide an example of object removal using our system of region hiding in Figure 

5-6. The first image is the testing image which contains both desired and undesired objects [56]. 

The second image is the training image which was captured at a different time than the first 

image; perhaps “after the moment had passed.” In this example, we wished to preserve the girl 

and dog but remove the chair on the right. The second image was captured at a cloudier time and 

at a slightly different angle than the first image. Therefore, the image containing both desired and 

undesired elements is brighter than the image containing neither. One way to overcome this is to 

color normalize the training image based on the testing image. We found that without applying 

color normalization before training the network and without batch normalization in the encoder 

stage, the predicted image appeared darker than the testing image. Applying color normalization 

to the training image did lighten the predicted image but not to the preferred intensity and 

therefore we further applied color normalization to the output image using the original image for 

reference. 
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Figure 5-6 From left to right, top to bottom, original image [56], normalized reference image, 

original image with unwanted object masked, object removal result from training on the reference 
image to inpaint the masked image. 

 Skip connections, which concatenate the weight maps produced in the encoder stage to 

their counterpart weight maps in the decoder stage, encourage preservation of desired objects in 

the predicted image. Unfortunately, this also means the presence of shadows from removed 

objects. Adjustments can be made to overcome artifacts, such as the shadows of removed 

objects, by fine tuning color matching and batch normalization parameters or simply adjusting 

the damage mask to encompass problem areas. 
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 In this chapter we have shown that region hiding can generate results that are comparable 

to other successful inpainting methods without reliance upon large datasets. We have also 

suggested additional applications for region hiding and provided an example of object removal 

using our method. 
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 6 Segmentation of Structures in Whole 
Slide Images of Colon Tissue with U-
Net 

6.1 Introduction 

 The National Cancer Institute estimates that colorectal cancer (CRC) will claim the lives 

of over 51,000 people in the United States in 2019 [57]. According to the American Cancer 

Society, the risk of developing CRC during one’s lifetime is about 1 in 22 for men and 1 in 24 

for women. Fortunately, thanks to improved detection methods and treatment options, the 

number of deaths per year due to CRC is decreasing [58]. Nonetheless, CRC is the second 

leading cancer cause of death among young adults (ages 20-49 years) and third leading cancer 

cause of death among all ages in the United States [59] [58]. The 2017 publication of the official 

Annual Report to the Nation on the Status of Cancer concluded that more attention and resources 

should be given to identifying major risk factors for common cancers such as colorectal, breast, 

and prostate [60].  

 Pathology is a subdivision of medical science concerned with the processes and causes of 

disease. Pathology specialists, or pathologists, examine biopsied tissues, bodily fluids, and 

organs in an effort to understand and diagnose diseases [61]. Pathologists, therefore, play a 

crucial role in diagnosing and determining cancer prognosis. Cancer prognosis is an estimated 

description of how cancer will affect a patient and how the cancer will respond to treatment. The 

factors that influence prognosis can be separated into two categories: prognostic and predictive. 
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Prognostic factors include tumor features such as size, location in the body, and grade, as well as 

patient features such as age and overall health. Predictive factors such as tumor markers, 

biomarkers, and genetic mutations help pathologists predict how cancer will respond to a certain 

treatment for a specific patient. For instance, some treatments are only effective for patients with 

a specific marker or genetic mutation [62] [63] [64]. Thorough multidimensional analysis allows 

oncologists to assign suitable treatment specifically designed for each unique patient. As 

expected, timely and accurate predictions are very important. 

 Currently, OmniPathology and a small team at Chapman University are collaborating to 

develop an innovative and extremely practical digital system that streamlines colon cancer 

prognostication. In this dissertation, we focus on one major component of the project; the 

segmentation of biological structures in whole slide images using image processing and machine 

learning techniques. We start with an overview and provide important background pertaining to 

colon cancer and biological structures in context with this portion of the project in 6.2. In 

sections 6.3 through 6.8, we discuss our current work and results up to this point. Finally, in 

section 6.9 we describe our goals for this component of the project moving forward and plans of 

implementation for cell type classification. The overall venture represents a true collaboration of 

computational, data, and medical sciences. The content of this dissertation is limited to the image 

segmentation aspect of the project. 

6.2 Background and Existing Knowledge 

 Whole slide imaging is a relatively new technology that allows complete digital scanning 

of pathology slides to produce whole slide images (WSIs), using state-of-the-art, high definition 

scanning equipment and software. In April 2017, the Food and Drug Administration (FDA) 
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approved Philips’ IntelliSite Pathology Solution (PIPS) as a whole slide imaging system for 

primary diagnosis [65]. This gave pathologists in the US the ability to perform primary diagnoses 

based on images of surgical biopsy slides without the obligation of physically being present to 

view the tissue under a microscope. Now, pathologists can work remotely, and biopsy slides no 

longer need to be shipped to specialists or between offices if a second or third opinion is desired. 

This is big step toward more efficient and accurate diagnosing procedures. Figure 6-1 shows an 

example of a WSI of colon tissue. 

 
Figure 6-1 Example of WSI of colon tissue sample [66]. Top left: Macro image of the entire slide 
with three sections of interest indicated with a green rectangle. Bottom left: Thumbnail of three 
sections from the same tissue sample with a red box around a region of interest within the left-

most section. Right: close-up of the region of interest from the actual WSI. 

 Colon adenocarcinomas are tumors that begin in the glands lining the large intestine. 

These glands, also known as crypts, are composed of epithelial cells and goblet cells. Goblet 

cells release mucous out onto the surface of the lumen of the large intestine to lubricate and act 

as a protective barrier against foreign particles. Figure 6-2 shows a sample of healthy colon 

tissue. Notice that the epithelium is one-cell thick and appears structurally organized, as if the 

gland lining is comprised of sheets of cells. This is indicative of healthy tissue. When the 
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epithelial cells transform into tumors, they no longer maintain the orderly structure of the one-

cell thick sheet. This can be observed in the image on the right in Figure 6-3. 

 
Figure 6-2 WSI of healthy colon tissue from the OmniPathology dataset [67]. Image on left is at 

10X magnification and image on right is at 20X magnification. Black rectangle in left image 
indicates location of the image on the right. Stroma between the glands appears normal with no 

inflammatory cells. The glands are one-cell thick and appear organized. 

 In response to the development of tumor cells, the body creates dense, fibrous tissue 

called desmoplastic stroma (DS) or desmoplastic response (DR), which in and of itself is 

considered a key indicator of the presence of tumors. Consideration of both tumor and DS and 

their relationship with each other provides a more complete picture of tumor progression than 

examining tumor cells alone. Previous research has shown that regarding DS as a predictor of 

colon cancer progression is prudent. Although researchers do not agree on how DS influences 

colon cancer invasion, metastasis, recurrence, and progression, they do agree on its importance. 

DS is thought to be the most important biological factor of malignant neoplasm [68]. While some 

research articles and studies claim that DS promotes tumor progression by providing nutrients 

and blood supply to build-up and support the tumor [69] [70] [71], others indicate that DS acts as 

a barrier protecting healthy tissue from potential cancer diffusion [72]. Perhaps the most accurate 

interpretation is that DS is responsible for both helping and hindering tumor progression [68]. 
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Figure 6-3 Comparison of structures in healthy and unhealthy colon tissues [73]. Left: healthy 
glands with normal stroma and organized epithelial cells. Right: Malignant glands with stroma 
containing inflammatory cells and disorganized masses of epithelial cells which have become 

tumors. When stroma is created in response to cancer, it is called the stromal response, or 
desmoplasia. 

 Computational pathology is the use of computational science algorithms and tools to 

facilitate the objectives of pathology. Currently, the expectations surrounding computational 

pathology are that it will enable pathologists to receive and report results more quickly, as well 

as offer new and advanced grading schemes of improved accuracy [74]. Soon, image processing 

applications will be introduced for extracting information from WSIs that pathologists cannot 

overtly detect or accurately assess. Noting recent and current developments in computational 

pathology, we are exploring how our image processing and machine learning algorithms can be 

utilized within the scope of colon cancer prognostication. 

6.3 Segmentation Project Aims 

 The main structures of interest present in a colon biopsy slide include glands, tumors, and 

stroma. For this project, our goal is to isolate these structures as well as background artifacts, and 

further differentiate between cell nuclei within the glands or tumors and cell nuclei within the 

stroma. Although we do not differentiate between the many specific cell types present in 

biopsied tissue: smooth muscle cells (SMCs), lymphocytes, fibroblasts, myofibroblasts, plasma 
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cells, neutrophils, and eosinophils, we do present a useful automatic system for viewing larger 

structures and cell nuclei independently of each other. In the future, our intention is to create a 

system that does distinguish between cell types with the added capability of toggling back and 

forth between segmentation maps from the same WSI to aid in histological analysis. Although 

outside the scope of this dissertation, potential implementation details of this future goal are 

discussed in section 6.9. 

6.4 Data 

 The data consists of digital RGB (red, green, blue color space) color images of 

hematoxylin and eosin (H&E)-stained colon biopsy slides. There are three sources from which 

we collected the images used in this segmentation project. The segmentation CNN was trained 

on the Warwick-QU dataset. The Warwick-QU dataset consists of 165 bitmap images of 

resolution 20Χ (0.62005μm/pixel), photographed using a Zeiss MIRAX MIDI slide scanner. The 

images were acquired by a team of pathologists at the University Hospitals Coventry and 

Warwickshire, UK. The Cancer Digital Slide Archive (CDSA) is a major source of WSIs and 

associated patient data [66]. The Colon Adenocarcinoma (COAD) dataset consists of 1441 

diagnostic H&E-stained WSIs. Each WSI in CDSA is linked to The Cancer Genome Atlas’s 

(TCGA) open access content so that individual patient clinical label data can be extracted for 

training and validation. Moreover, we have been provided with 30 JPEG image files of various 

sizes courtesy of Dr. Mohammad Kamal of OmniPathology [67]. Dr. Kamal has also been an 

invaluable source of information pertaining to cell types and structures within the tissue. 
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6.5 Approach 

We use a CNN to delineate the large structures: glands, stroma, and artifacts, and histogram 

analysis with thresholding in tandem with the CIE L*a*b* color space [75] to isolate cell nuclei. 

We rely on pixel intensity to distinguish cells from the rest of the image. The thin strips of biopsied 

tissue are treated with H&E dyes to color the acidic structures purple and the basic structures pink. 

Eosin is an acidic dye and is therefore drawn to basic structures in the tissue: most proteins in the 

cell cytoplasm. Hematoxylin is not basic but it binds to a mordant of aluminum ions which are 

drawn to acidic structures: DNA in the cell nuclei and RNA in the ribosomes and rough 

endoplasmic reticulum in the cytoplasm, effectively causing the Hematoxylin to behave as a basic 

dye [76]. When changing a color image to grayscale, purple manifests in the transformed image 

as a darker intensity than pink. Because cell nuclei are acidic, they appear dark purple in H&E-

stained slides. Therefore, we implement a thresholding algorithm to determine the appropriate 

grayscale pixel intensity that successfully preserves the dark purple cell nuclei. 

 
Figure 6-4 An example of a histogram for a region of interest from a WSI. The first threshold is 
based on the mean pixel value and the second threshold is based on the first zero crossing that 

occurs after the global maximum. This can be more easily appreciated in the figure on the right 
which incorporates a plot of the derivative of the histogram below. The slope of the histogram 

equals zero at pixel value 231. 
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 Color normalization ensures that lab-to-lab staining variability does not impact 

segmentation results. Reinhard normalization, as described in [77], is a color correction method 

that applies color features of a reference image to a target image. Both images are transformed 

from the RGB color space to the ݈ߚߙ color space [78], then each element in each channel, ݈, ߙ, 

and ߚ, of the target image is shifted by subtracting the mean of all elements in each channel. 

Next, each element in each channel of the mean-shifted target image is rescaled by the ratio of 

the target image’s standard deviation and the reference image’s standard deviation for each 

channel. Finally, the mean of the reference image for each channel is added to each element in 

each channel of the target image [77]. The color corrected target image is transformed back to 

RGB and then to grayscale in preparation for histogram analysis. 

 After applying Reinhard normalization using a standard H&E-stained slide image for 

reference, the mean pixel value of the grayscale image, which is used as the first threshold value, 

is close to 172 for all normalized input images. Pixels that are less than this value are classified 

as belonging to the glands or cells within the stroma. Experimentally we observed that the pixel 

value that delineates the background artifact from the rest of the image corresponds to the local 

minimum following the absolute maximum of the input image histogram. This second threshold 

value is mathematically determined by differentiating the section of the histogram signal above 

the absolute maximum with respect to the pixel values. Since the derivative at the location of the 

local minimum is zero, we assign the pixel value associated with the first zero crossing to the 

second threshold. When there is no local minimum after the global maximum, a default value of 

216 is assigned to the second threshold. This default value was determined experimentally. The 

segmentation results from our automatic thresholding scheme for the samples in Figure 6-5 are 

provided in section 6.7.2. The operation is not limited to segmenting structures in images 
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containing malignant glands. Figure 6-9 in section 6.7.2 shows the histogram and segmentation 

results for an image containing solely normal colon tissue. The segmentation results for an 

additional image of normal colon tissue are included in Appendix C.4. 

 
Figure 6-5 The histograms of three normalized images from the OmniPathology dataset [67]. The 

vertical red bars indicate the pixel values that delineate the three main components of the input 
images: (1) Glands and cells in the stroma, (2) stroma, and (3) background artifact. The first 

threshold value is equivalent for each image due to the color normalization operation. The second 
threshold value corresponds to the local minimum immediately following the absolute maximum 

of the histogram. 
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 The CIE L*a*b* color space is a three coordinate system like the RGB color space but 

instead of each channel being descriptive of a specific color; i.e., red, green, and blue, L*a*b* 

represents luminance in the first layer, L*, color ranging from green to red in the second layer, 

a*, and color ranging from blue to yellow in the third layer, b*. We do not use the CIE L*a*b* 

color space to delineate structures initially since luminance in the grayscale transformed images 

is sufficient to distinguish the three main components. Furthermore, at times the background and 

the stroma are similar in color and would therefore be grouped in the same class. Instead, we 

utilize the additional luminance thresholding offered by the CIE L*a*b* color space to further 

isolate cell nuclei from cytoplasm.  

6.6 Gland Segmentation U-Net Architecture 

 The U-Net architecture used for gland segmentation is similar to the architecture utilized 

in the region hiding inpainting scheme from chapter 5. We again use the encoder-decoder system 

with stacked convolutional layers and skip connections. However, because we are not trying to 

fill in missing information, we do not employ the partial convolutional operation in our 

convolutional layers. The 256 ൈ 256 ൈ 3 color image to be segmented is input into the network 

at the encoder stage which starts with a convolutional layer that uses zero padding and horizontal 

and vertical strides of size 2. This process continues until a bottle neck is reached following layer 

7, at which point the decoder stage begins. Skip connections concatenate encoder stage output 

channels to decoder stage input channels after nearest neighbor upsampling.  

 The last layer of the network connects the network input to the output of the second to 

last layer, applies the final convolutional layer operation then applies sigmoid activation before 

outputting the segmentation map result. Sigmoid activation is an appropriate nonlinearity for 
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binary semantic segmentation tasks because it ensures that output values will be between 0 and 

1. Additionally, due to the nature of the sigmoid function curve, individual output values tend to 

favor one of the two extremes, therefore promoting clear distinction between gland and not gland 

classification. Table 6-1 shows the architecture of the gland segmentation network that we 

trained on the GlaS Warwick-QU training dataset [73]. We report quantitative results using the 

two testing sets from the same source in section 6.7.1. 

Table 6-1 Details of Gland Segmentation U-Net Architecture 

Layer Type Layer output maps 

(count and size) 
Kernel 

size 

S
trid

e 

U
p

sam
p

le 

BN Activation 

In Input 3 256×256 -- --      --  -- -- 
1 Convolution 64     128×128 7 × 7 2       --  -- ReLU 
2 Convolution 128     64×64 5 × 5 2       --  BN ReLU 
3 Convolution 256     32×32 5 × 5 2       --  BN ReLU 
4 Convolution 512     16×16 3 × 3 2       --  BN ReLU 
5 Convolution 512     8×8 3 × 3 2       --  BN ReLU 
6 Convolution 512     4×4 3 × 3 2       --  BN ReLU 
7 Convolution 512     2×2 3 × 3 2       --  BN ReLU 

8 Connect to 6 
Convolution 

1024 

512    
4×4 
4×4 

  
3 × 3 

--       2 
1       --  

 -- 
BN 

 -- 
LeakyReLU(0.2) 

9 Connect to 5 
Convolution 

1024 

512    
8×8 
8×8 

  
3 × 3 

--       2 
1       -- 

--  
BN 

--  
LeakyReLU(0.2) 

10 Connect to 4 
Convolution 

1024   
512    

16×16 
16×16 

  
3 × 3 

--       2 
1       --  

--  
BN 

--  
LeakyReLU(0.2) 

11 Connect to 3 
Convolution 

768 
256     

32×32 
32×32 

  
3 × 3 

--       2 
1       --  

--  
BN 

--  
LeakyReLU(0.2) 

12 Connect to 2 
Convolution 

384 
128     

64×64 
64×64 

  
3 × 3 

--       2 
1       --  

--  
BN 

--  
LeakyReLU(0.2) 

13 Connect to 1 
Convolution 

192     
64      

128×128 
128×128 

  
3 × 3 

--       2 
1       --  

--  
BN 

--  
LeakyReLU(0.2) 
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14 
Out 

Connect to In 
Convolution 

67  
1       

256×256 
256×256 

  
3 × 3 

--       2 
1       --  

 --  
-- 

--  
Sigmoid 

 As discussed in chapter 5, the U-Net was initially intended for biomedical image 

segmentation tasks with sparse datasets [3]. Because we are training on only 85 images, data 

augmentation is especially important. By applying transformations to the training dataset in order 

to increase the number of training images, we can encourage the network to learn to segment 

gland shapes and orientations which may not be represented in the training set. We use Keras’s 

[47] ImageDataGenerator class to apply flips, rotations, and shifts with reflection fill-mode to 

augment the training dataset. 

6.7 Results 

 In this section we present the results from incorporating the three approaches discussed 

thus far: (1) Semantic segmentation of glands/not glands in H&E-stained biopsy slides using U-

Net with quantitative metrics reported on the GlaS Warwick-QU testing datasets [73], (2) 

Segmentation of glands, stroma, and background in the images from OmniPathology [67], in 

regions of interest within WSIs from COAD [66], and in the GlaS Warwick-QU datasets, 

utilizing our histogram analysis and thresholding algorithm, and (3) Individual cell isolation in 

regions of interest taken from each of the datasets. Approach (1) is both quantitatively and 

qualitatively assessed whereas approaches (2) and (3) are qualitatively assessed. 

6.7.1 Quantitative Assessment of U-Net Gland Segmentation Results 

 To quantitatively measure our gland segmentation U-Net performance, we calculate 

common segmentation metrics: Jaccard similarity coefficient, i.e. intersection over union (IOU), 

Sørensen-Dice similarity coefficient, boundary F1 score, precision, and recall. Note that although 
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the GlaS Warwick-QU competition site recommends that the F1 score be calculated in terms of 

true positive (TP), false positive (FP) and false negative (FN) glandular object detection counts, 

we provide the boundary F1 score which is calculated at the pixel level and indicates how 

closely the boundaries in the predicted segmentation mask match the boundaries in the 

corresponding ground truth segmentation mask. The boundary F1 score is calculated as follows: 

ܨܤ ൌ ଶ∗௣௥௘௖௜௦௜௢௡∗௥௘௖௔௟௟

௣௥௘௖௜௦௢௡ା௥௘௖௔௟௟
,	 (6.1) 

where ݊݋݅ݏ݅ܿ݁ݎ݌ is the number of pixels on the boundary of the predicted segmentation mask 

that are close enough to the boundary of the ground truth segmentation mask divided by the 

predicted boundary length, and ݈݈ܽܿ݁ݎ is the number of pixels on the boundary of the ground 

truth segmentation mask that are close enough to the boundary of the predicted segmentation 

mask divided by the ground truth boundary length. In other words, ݊݋݅ݏ݅ܿ݁ݎ݌ is the number of 

true positives detected divided by the total number of positives detected, both true and false: 

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ ்௉

்௉ାி௉
,	 (6.2) 

and ݈݈ܽܿ݁ݎ is the number of true positives detected divided by the total number of positives, both 

detected and undetected: 

݈݈ܽܿ݁ݎ ൌ ்௉

்௉ାிே
.	 (6.3) 

The pixel level metrics were calculated for each individual image then the resulting values were 

averaged over the specific testing set and listed in Table 6-2. 



 

75 

Table 6-2 Metric values for test sets A and B of GlaS Warwick-QU 

 Jaccard similarity 

coefficient (IOU) 
Dice similarity 

coefficient 
Boundary 

F1 score Precision Recall 

Test set A 0.8195 0.8955 0.7737 0.7309 0.8360 
Test set B 0.8168 0.8899 0.7415 0.7092 0.7849 

 To demonstrate the difference between pixel level BF score and object level F1 score 

values, we have included three samples showing our predicted segmentation masks atop the 

ground truth segmentation masks in Figure 6-6. The overlaid segmentation masks were generated 

in MATLAB with imshowpair function [18]. In image (a), the predicted segmentation received a 

perfect score for object level F1 since the model successfully detected six glands in the slide 

image. However, although the contours of the ground truth and the segmentation prediction are 

closely aligned, they are not perfectly matched, therefore the BF score is 0.91. Image (b) shows a 

case in which the object level F1 score would be less than 1 since the small gland touching the 

right border, middle from the top, is less than 50% overlapped by the predicted segmentation 

mask and is therefore considered a false negative. The two glands in the right upper corner would 

nonetheless be considered true positives since each is overlapped by at least 50% of the predicted 

mask. Image (c) shows the case in which there are five true positives detected and an extraneous 

region that the network incorrectly identified as a gland. Again, this would result in both a lower 

BF score and a lower F1 score. 
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Figure 6-6 Three samples to show the difference between predicted segmentation results and 

ground truth segmentation. White indicates overlap of the two segmentation masks (true 
positives), purple indicates regions that the ground truth mask considers glandular tissue but that 

the prediction mask does not (false negatives), and green indicates regions that the prediction 
mask considers glandular tissue but that the ground truth mask does not (false positives). We have 

also included corresponding pixel level metrics and object level metrics in Table 6-3. 

Table 6-3 Quantitative comparison of three segmentation mask overlap samples 

 Image (a) Image (b) Image (c) 

IOU 0.9356 0.9197 0.7031 

Dice 0.9667 0.9582 0.8257 

BF 0.9116 0.8596 0.7026 

Precision 0.9214 0.8902 0.5463 

Recall 0.9021 0.8310 0.9840 

    

Object IOU 1.0 0.8333 0.8333 

Object Dice 1.0 0.9091 0.9091 

Object F1 1.0 0.9091 0.9091 

Object Precision 1.0 1.0 0.8333 

Object Recall 1.0 0.8333 1.0 

 Whereas the boundary F1 score quantitatively expresses how close the predicted gland 

boundaries are to the actual gland boundaries, the Jaccard similarity coefficient and Sørensen-

Dice similarity coefficient measure the overlap of the two segmentation masks. The Jaccard 

similarity coefficient is calculated as the number of pixels in the prediction mask that overlap 

with the pixels in the ground truth mask divided by the number of pixels in their union: 

Image (a) Image (b) Image (c) 
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ሻܭܵܣܯ,ܶܩሺ݀ݎ݆ܽܿܿܽ ൌ
|ீ்⋂ெ஺ௌ௄|

|ீ்⋃ெ஺ௌ௄|
ൌ ்௉

்௉ାி௉ାிே
.	 (6.4) 

In our case, the pixel level Jaccard similarity coefficient can be visually appreciated as the area 

of the white region divided by the combined areas of the white, purple, and green regions shown 

in Figure 6-6. The Dice similarity coefficient is like Jaccard similarity but double counts the 

overlapping region in both the numerator and denominator: 

݀݅ܿ݁ሺܭܵܣܯ,ܶܩሻ ൌ ଶ|ீ்⋂ெ஺ௌ௄|

|ீ்|ା|ெ஺ௌ௄|
ൌ ଶ∗்௉

ଶ∗்௉ାி௉ାிே
.	 (6.5) 

Object level Dice similarity is equivalent to object level F1 score. 
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Figure 6-7 Successful segmentation results for five images taken from test set A of [73]. The left 
column shows the input images, the center column shows segmentation prediction mask atop the 

input image, and the right column shows the ground truth segmentation mask atop the input 
image. 

 Examination of metrics and what they represent about the results is important to our 

overall mission. It may be the case that perfect alignment of contours between the prediction and 

the ground truth is unnecessary or perhaps it is indeed necessary but there is some room for error. 
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To successfully detect and isolate cell nuclei post gland segmentation, the ability of the network 

to perform well at the pixel level is key. False positives may sound innocuous compared to false 

negatives but depending on the locations of the cells we are trying to detect, i.e., the glands or the 

stroma, closely aligning with the true boundaries of the gland objects is important for cell 

isolation in both locations. 

6.7.2 Qualitative Assessment of Cell Isolation Results 

 We do not have annotated data to quantitatively validate our background and cell nuclei 

segmentation results. However, we have included several samples of our results and have based 

our qualitative assessment on feedback from Dr. Kamal over several meetings and conversations. 

We will first provide results from our automatic segmentation system via histogram analysis and 

thresholding as described in section 6.5. Then, we will further isolate cell nuclei by transforming 

the region of interest to the CIE L*a*b* color space and removing the light blue pixels from our 

detection mask. Finally, we incorporate the U-Net segmentation results so that we may 

differentiate between cells in the glands/tumors and cells in the stroma. 

 The results from applying our histogram thresholding segmentation algorithm, described 

in section 6.5, to the three images in Figure 6-5 are shown in Figure 6-8. The algorithm 

successfully distinguishes between the three main components. Figure 6-10 applies both 

histogram thresholding and our pretrained CNN to a 3000 ൈ 3000 pixel region of interest (ROI) 

from a WSI downloaded from the CDSA [66]. The first step is to apply Reinhard color 

normalization to the ROI then input the image into the automatic thresholding program. The 

output consists of three images focusing on the three components: the first is the normalized 

input with all but the stroma masked, the second is the normalized input with all but the tumors 
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and cells masked, and the third is the normalized input with all but the background artifact 

masked. At this point, we are ready to combine the masks from both segmentation methods. 

 
Figure 6-8 Segmentation results from using our histogram thresholding algorithm on the three 

images in Figure 6-5. The top two images are at 20X magnification while the bottom image is at 
10X magnification. All three images are from the OmniPathology dataset [67]. 

(a) Glands and cells in stroma (b) Stroma (c) Background 
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Figure 6-9 Histogram of normalized image of benign tissue from test set B of [73] and 

segmentation results from utilizing our automatic thresholding algorithm. The vertical red bars 
indicate the pixel values that delineate the three main components: (a) Glands and cells in stroma, 

(b) stroma, and (c) background. Since there is no local minimum after the global maximum, 
which occurs at pixel value 255, a default value of 216 is assigned to the second threshold. 

 

Normal colon histogram 

Pixel value 

C
ou

nt
 

Normal colon tissue 

(b) Stroma (a) Glands and cells in stroma (c) Background 

172         216 



 

82 

 
Figure 6-10 Example of utilizing the two segmentation methods together to isolate various 
structures in a region of interest taken from a WSI from the CDSA [66]. From here, we can 

distinguish between cells in the stroma and cells in the tumors. 

 We will now examine the cell nuclei isolation method which relies on the CIE L*a*b* 

color space. As mentioned in section 6.5, we use CIE L*a*b* because it represents pixels in a 

(a) Region of interest image (b) Normalized version of (a) 

(c) Stroma (d) Glands and cells in stroma (e) Background 

(f) U-Net gland segmentation 
results overtop (b) 

(g) The DS and background 
overtop (b) 
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way that measures color and luminance separately. Figure 6-11 shows the progression of cell 

nuclei isolation by location. Cell type can be difficult to discern without the context of the 

surrounding stroma. However, an artificial neural network can be trained to classify cell types 

based on characteristics that humans do not intuitively recognize as descriptive; shape, for 

example. Figure 6-12 shows a close-up from the bottom right image in Figure 6-11. We follow-

up with the notion of utilizing shape to classify cell types in section 6.9. 

 
Figure 6-11 Cell nuclei isolation. Top left to bottom right: Input image, results from filtering 

relatively light pixels from the CIE L*a*b* transformed input image, application of the mask in 
part (f) of Figure 6-10 to show isolated cell nuclei located in the tumors, and application of the 

mask in part (g) to show isolated cell nuclei located in the stroma. 
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Figure 6-12 Close-up of cells in the stroma. The rightmost image is the result from isolating cell 

nuclei in the center image. 

 In some cases, isolating the cell nuclei may not be as desirable as viewing the cells with 

their cytoplasm. Depending on the application, it may be more appropriate to elect for less severe 

cell segmentation. Figure 6-13 shows an example of this. The center image is a close-up of the 

result from our histogram thresholding program with the glands/tumors masked. The image on 

the right shows the cell nuclei segmentation results. The center image does a better job at 

capturing both cell nuclei and cytoplasm. However, it does not separate individual cells as well 

as the image on the right. Nonetheless, the cell nuclei isolation method has masked many cells 

that the histogram analysis approach successfully detected. Looking closely, the image on the 

right has removed smooth muscle cells and many fibroblasts, which the center image preserves. 

Rather than display more of our results in the text of this dissertation, we have provided 

additional samples from the three approaches in Appendix C. 

 
Figure 6-13 Close-up of cells in the stroma taken from the segmentation results shown in 

Appendix C. The rightmost image is the result from isolating cell nuclei in the center image. 
Depending on the application, the center image may be more desirable than the image on the 

right. 
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6.8 Software and Hardware 

 To select, view, and save regions of interest, we use OpenSlide [79] with an intuitive 

MATLAB wrapper [80]. We trained the segmentation U-Net on Schmid’s HPC (high 

performance computing) cluster with an NVIDIA Tesla V100 GPU. The network takes about 40 

minutes to train with a training set of 85 color images of various sizes that are resized to 256 by 

256, with a batch size of 5, 20 epochs, 1000 steps per epoch, and simple ℓଵ loss. We 

experimented with binary cross entropy and a combination of ℓଵ and IOU losses but simple ℓଵ 

loss worked best. We utilize Adam optimizer with a constant learning rate of 0.0002. Batch 

normalization is employed in both the encoder and decoder stages. Otherwise, we did not apply 

any preprocessing normalization to the datasets. The U-Net was written in Python to use Keras 

[47] operations and network layers with a Tensorflow backend [50]. To segment an image in the 

testing phase, it takes 2 seconds per 256 ൈ 256 color image (2.37 seconds/iteration) and 2 

seconds per 512 ൈ 512 color image (2.69 seconds/iteration). 

 The Genomic Data Commons (GDC) data transfer tool [81] was used to transfer WSIs 

and associated patient clinical data from the CDSA COAD repository [66]. WSIs are in SVS 

format and were extracted from Aperio using OpenSlide 3.4.1 [79]. Many of the individual SVS 

files contain up to four images associated with the slide: the WSI, label, macro image, and 

thumbnail. Figure 6-1 shows the macro image (top left), the thumbnail (bottom left), and a 

3000 ൈ 3000 pixels patch from the WSI (right). We implement small cellular structures 

segmentation in MATLAB [18]. Before applying our histogram thresholding technique, we first 

normalized all images using Reinhard normalization in HistomicsTK [82]. 
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6.9 Cell Type Classification 

 Cell detection can be accomplished by locating cell nuclei based on pixel intensity. 

Classifying cells into specific cell types is a more complicated task because cell type cannot be 

determined by pixel intensity alone. The traits that separate one cell type from another in an 

image pertain to color, shape, and size. For example, fibroblasts are visually distinct because of 

their tear-drop wispy appearance. Depending on the lab where the staining occurs, the technician 

doing the staining, or even the unique variations among fibroblasts themselves, they may range 

from quite light purple to very dark purple. Fibroblasts also vary in size which means 

classification must rely heavily upon shape. Table 6-4 shows examples of cell types that are 

common in WSIs. 

Table 6-4 Images of cell types 

SMCs Lymphocytes Fibroblasts Myofibroblasts Plasma Cells 

Neutrophils 

and 

Eosinophils 

 
Long 

cigar 

shaped 

nucleus. 

 

 
Large nucleus, 

very little 

cytoplasm. 

 

 

 
Tear drop 

shaped, can 

appear wispy. 

 

 
Similar to 

fibroblasts with 

less hematoxylin 

dye in the nucleus. 

 

   
Clock face 

nucleus, lots of 

cytoplasm.  

 

 
Eosinophils 

look like 

neutrophils but 

with more eosin 

in nucleus, 

hence the name. 

 We now present a prospective algorithm which can be used to classify cells by type. 

Pathologists select regions of interest from WSIs to create a suitable dataset. The regions of 
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interest are subjected to color normalization, histogram analysis, and preliminary segmentation 

before being separated into sub-images and sent to pathologists for annotation, Figure 6-14. 

1) Remove the stroma and slide background from the image so we are just left with cell nuclei. 

2) Apply segmentation masks to distinguish between cells located in the glands/tumors and cells 

located in the stroma. 

3) Use blob detection to pinpoint the location of each unique cell and store these locations in a 

matrix. 

4) Classify each cell by its type using a CNN. 

 
Figure 6-14 Regions of interest are subjected to color normalization, histogram analysis, and 
preliminary segmentation before being separated into sub-images and sent to pathologists for 

annotation. 
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Figure 6-15 From left to right: Sub-image from region of interest outlined in red in Figure 6-14, 

automatic thresholding results, and simulated semantic segmentation of tissue by cell type. 
(Important: The image on the right is not an actual semantic segmentation result.) 

Once all cells are classified, the user can choose to display “blobs” (or cells) that fit a particular 

classification. This would also be useful for cell counting by type, Figure 6-16. 

 
Figure 6-16 Simulated cell counting results. 

Although we can use computational science tools and algorithms to make the process easier, time 

and effort must be invested into the examination and annotation of each sub-image by 

pathologists 

Smooth muscle cells: 6 

Plasma cells: 2 

Lymphocytes: 2 

Fibroblasts: 15 

Myofibroblasts: 11 

Neutrophils: 9 

Eosinophils: 4 

Unknown cells: 2 

Total cells detected: 51 
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 7 Conclusion 

 In this dissertation we covered several image restoration techniques and leveraged 

previous methods to design and implement our own systems. We began with a survey of 

traditional, non-machine learning approaches to image restoration, and focused on algorithms 

that could be applied specifically to missing and damaged regions inpainting. We demonstrated 

techniques both within their proposed frameworks and beyond, through application within our 

inpainting systems. We proposed and implemented an automatic damaged regions detection 

algorithm by building upon and improving previous methods. We adjusted the SVD cosine 

similarity matrix to incorporate side by side and stacked pixel neighborhoods so that both 

horizontal and vertical damage is detected, instead of focusing solely on vertical damage. 

Furthermore, we applied the algorithm outside of its intended use, detecting cracks in images of 

walls and pavement, by including scanned damaged photographs and digital images of finely 

cracked paintings. 

 We developed a unique, simple, and effective solution to inpainting damaged regions at 

the borders of scanned photographs and cracked paintings by applying PDE boundary conditions 

outward from the interior of the repaired image counterintuitively. For images containing 

splotches and dots, we recognized the usefulness of the inverted Laplacian magnitude matrix, 

used in image compression and decoding, and proposed applying it to automatic damaged 

regions detection to preserve edge locations. Although our system does not completely overcome 

manual inpainting mask creation, it offers a time-saving and precise solution to fully manual 
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mask creation, especially for difficult wide-spread damage, by automatically generating 

approximate inpainting masks that can be easily modified. 

 The main contribution of this dissertation is an image inpainting technique that relies on 

machine learning. After a short introduction to GANs and encoder-decoders, we discussed 

common loss functions used for training CNNs in image-to-image translation tasks. We 

introduce the U-Net and defend our decision to utilize its encoder-decoder architecture with 

stacked partial convolutional layers and skip connections. We describe an original approach to 

image inpainting using a novel tactic called region hiding. Region hiding encourages the network 

to learn to inpaint the damaged image by forcing it to make predictions about regions that it 

cannot see, but that are indeed intact. The network is awarded for correctly predicting the hidden 

regions based on non-damaged unhidden regions. The success of the region hiding method with 

the PConvNN can be observed in the results provided. 

 The last written component of this dissertation embodies image processing and machine 

learning methods seemingly unrelated to inpainting. However, both image restoration and image 

segmentation are examples of translation where underlying information from the input image 

must be purposefully represented in the output image. Yet, it is also necessary that specific parts 

of the signal be filtered or removed from the input image altogether, be it noise, damage, texture, 

or color. We began this final component by seriously considering the prevalence of colon cancer 

and its increasing occurrence in young adults. We provided applicable colon histology 

terminology and helpful background information to facilitate reader understanding before 

discussing goals and implementation details. To segment large structures in regions of interest 

taken from WSIs, we again employed the U-Net with convolutional layers. Working with a 
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sparse training dataset compelled us to utilize augmentation techniques. Our segmentation 

success can be both quantitatively and qualitatively appreciated in the results provided. 

 Through experimentation, we observed that the histograms associated with WSIs tended 

to conform to a similar pattern. To delineate color intensities, which also distinguish tissue 

properties due to the nature of H&E staining, we calculated two thresholds. This divided the 

histogram into three parts corresponding to three specific structures: glands (and/or tumors) and 

cells in the stroma, stroma, and slide background. After converting the input image to the CIE 

L*a*b* color space, we further isolated individual cell nuclei by operating on the luminosity 

layer of the masked gland image to filter out lighter pixels. Using these cell isolation results 

together with the glands segmentation results allowed us to distinguish between cells in the 

glands and cells in the stroma. We conclude our WSI structures segmentation component by 

revealing future goals for this research, including cell type classification. 

 



 

92 

References 

[1]  C. Martin-King and M. Allali, "Automatic damaged region detection and inpainting," in The 
20th International Conference on Image Processing, Computer Vision, & Pattern 
Recognition (IPCV'16), Las Vegas, 2016.  

[2]  C. Martin-King and M. Allali, "Region hiding for image inpainting via single-image training 
of U-Net," in The 2019 International Conference on Computational Science and 
Computational Intelligence (CSCI), Las Vegas, 2019.  

[3]  O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional networks for biomedical 
image segmentation," Medical Image Computing and Computer-Assisted Intervention 
(MICCAI), vol. 9351, pp. 234-241, 2015.  

[4]  P. Kainz, M. Pfeiffer and M. Urschler, "Segmentation and classification of colon glands with 
deep convolutional neural networks and total variation regularization," PeerJ, 2017.  

[5]  M. Bertalmio, L. Vese and G. Sapiro, "Simultaneous structure and texture image inpainting," 
IEEE Transactions On Image Processing, vol. 12, no. 8, pp. 882-889, 2003.  

[6]  L. A. Vese and S. J. Osher, "Modeling textures with total variation minimization and 
oscillating patterns in image processing," Journal of Scientific Computing, vol. 19, pp. 553-
572, 2003.  

[7]  A. A. Efros and T. K. Leung, "Texture synthesis by non-parametric sampling," in IEEE 
International Conference on Computer Vision, Corfu, 1999.  

[8]  A. Gersho, Artist, Barbara. [Art].  

[9]  E. Karaca and M. A. Tunga, "An interpolation-based texture and pattern preserving 
algorithm for inpainting color images," Expert Systems With Applications, vol. 91, pp. 223-
234, January 2018.  

[10] C. Barnes, E. Shechtman, A. Finkelstein and D. B. Goldman, "PatchMatch: A randomized 
correspondence algorithm for structural image editing," in ACM Transactions on Graphics 
(Proc. SIGGRAPH), New Orleans, 2009.  

[11] L. I. Rudin, S. Osher and E. Fatemi, "Nonlinear total variation based noise removal 
algorithms," Physica D, vol. 60, pp. 259-268, 1992.  



 

93 

[12] T. F. Chan, J. Shen and H.-M. Zhou, "Total variation wavelet inpainting," Journal of 
Mathematical Imaging and Vision, vol. 25, no. 1, pp. 107-125, 2006.  

[13] M. Mainberger, A. Bruhn, J. Weickert and S. Forchhammer, "Edge-based compression of 
cartoon-like images with homogeneous diffusion," in Fachrichtung 6.1 -- Mathematik, 
Saarbrucken, Universitat des Saarlandes, 2010.  

[14] L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. Hoo Tang, S. Setzer, D. 
Johannsen, F. Neumann and B. Doerr, "Optimising spatial and tonal data for PDE-based 
inpainting," in Lecture Notes in Computer Science, vol. 6667, Springer, Berlin, Heidelberg, 
2012, pp. 26-37. 

[15] Trui. [Art].  

[16] R. W. Floyd and L. S. Steinberg, "An adaptive algorithm for spatial grayscale," in 
Proceedings of SID, Seattle, 1976.  

[17] M. G. Padalkar, M. A. Zaveri and M. V. Joshi, "SVD based automatic detection of target 
regions for image inpainting," in Asian Conference on Computer Vision; Computer vision - 
ACCV 2012 Workshops, Daejeon, 2012.  

[18] MATLAB, version 9.5.0.1033004 (R2018b) Update 2, Natick: MathWorks Inc., 2018.  

[19] M. Rutledge, Artist, A Crack in the Pavement of a Chequered Neighborhood. [Art]. 
Flickr.com, 2008.  

[20] alien_sunset, Artist, Pavement cracks 1 (2). [Art]. Flickr.com, 2012.  

[21] Unknown, Artist, Unknown Oil Painting of Eye. [Art].  

[22] J. Butler, Artist, Torn Victorian Photo Pre-restoration. [Art]. PhotoValet.  

[23] simpleinsomnia, Artist, Photo booth portrait of a chubby man 2, "Dad 1940". [Art]. 
Flickr.com, 2016.  

[24] Unknown, Artist, Boy in Overalls. [Art].  

[25] Unknown, Artist, GIRLBAD1. [Art].  

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. 
Courville and Y. Bengio, "Generative adversarial nets," in Advances in Neural Information 
Processing Systems 27 (NIPS 2014), 2014.  



 

94 

[27] S. Iizuka, E. Simo-Serra and H. Ishikawa, "Globally and locally consistent image 
completion," ACM Transactions on Graphics, vol. 36, no. 4, 2017.  

[28] H. Li, G. L, L. L. and Y. Yu, "Context-aware semantic inpainting," IEEE Transactions on 
Cybernetics, vol. 49, no. 12, pp. 4398-4411, 2018.  

[29] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu and T. S. Huang, "Generative image inpainting with 
contextual attention," arXiv preprint arXiv:1801.07892, 2018.  

[30] C. Yang, Y. Song, X. Liu, Q. Tang and C.-C. J. Kuo, "Image inpainting using block-wise 
procedural training with annealed adversarial counterpart," arXiv preprint, March 2018.  

[31] W. Xiong, J. Yu, Z. Lin, J. Yang, X. Lu, C. Barnes and J. Luo, "Foreground-aware image 
inpainting," ArXiv, 22 April 2019.  

[32] X.-J. Mao, C. Shen and Y.-B. Yang, "Image restoration using very deep convolutional 
encoder-decoder networks with symmetric skip connections," in 29th Conference on Neural 
Information Processing Systems (NIPS 2016), Barcelona, 2016.  

[33] Y. Liu, J. Pan and Z. Su, "Deep blind image inpainting," CoRR, vol. abs/1712.09078v1, 25 
December 2017.  

[34] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao and B. Catanzaro, "Image inpainting for 
irregular holes using partial convolutions," ECCV 2018, 2018.  

[35] P. Isola, J.-Y. Zhu, A. A. Efros and T. Zhou, "Image-to-image translation with conditional 
adversarial networks," arXiv:1611.07004v3, 2018.  

[36] L. A. Gatys, A. S. Ecker and M. Bethge, "A neural algorithm of artistic style," Journal of 
Vision, 2015.  

[37] J. Johnson, A. Alahi and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-
resolution," in European Conference on Computer Vision, Amsterdam, 2016.  

[38] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image 
recognition," in International Conference on Learning Representations (ICLR), San Diego, 
2015.  

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. 
Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, "ImageNet large scale visual recognition 
challenge," International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211-252, 
2015.  

[40] S. Sund, Artist, Color Block Living. [Art]. Flickr, 2015.  



 

95 

[41] S. Sund, Artist, Departing Storm. [Art]. Flickr.com, 2018.  

[42] C. J. Oliver, Artist, BNSF Switching Yard. [Art]. Flickr.com, 2010.  

[43] S. Sund, Artist, Autumn Grove. [Art]. Flickr.com, 2015.  

[44] T. Baranowski, Artist, Colours. [Art]. Flickr.com, 2018.  

[45] D. Ulyanov, A. Vedaldi and V. Lempitsky, "Deep image prior," arXiv:1711.10925v3, 2018. 

[46] A. W. Harley, K. G. Derpanis and I. Kokkinos, "Segmentation-aware convolutional 
networks using local attention masks," in IEEE International Conference on Computer 
Vision (ICCV), Venice, Italy, 2017.  

[47] F. Chollet, Keras, GitHub, 2015.  

[48] G. Liu, K. J. Shih, T.-C. Wang, F. A. Reda, K. Sapra, Z. Yu, A. Tao and B. Catanzaro, 
"Partial convolution based padding," NVIDIA Corp., Santa Clara, 2018. 

[49] K. He, X. Zhang, S. Ren and J. Sun, "Delving deep into rectifiers: Surpassing human-level 
performance on ImageNet classification," in 2015 IEEE International Conference on 
Computer Vision (ICCV), Santiago, Chile, 2015.  

[50] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. 
Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, 
Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. 
Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. 
Vasudevan, V. Fernanda, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. 
Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.  

[51] M. Gruber, "PConv-Keras," 2018. [Online]. Available: 
https://github.com/MathiasGruber/PConv-Keras. [Accessed 7 January 2019]. 

[52] G. Bradski, "The OpenCV Library," Dr. Dobb's Journal of Software Tools, 2000.  

[53] M. Gruber, "PConv-Keras," 2018. [Online]. Available: 
https://github.com/MathiasGruber/PConv-Keras/blob/master/libs/util.py. [Accessed 07 
January 2019]. 

[54] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural 
networks," in International Conference on Artificial Intelligence and Statistics (AISTATS), 
Sardinia, Italy, 2010.  



 

96 

[55] younesse-cv, "PatchMatch," 9 September 2013. [Online]. Available: 
https://github.com/younesse-cv/PatchMatch. [Accessed June 2019]. 

[56] C. Martin-King, Artist, Emma and Yakimo. [Art]. 2019.  

[57] SEER, "Cancer Stat Facts: Colorectal Cancer," National Cancer Institute, 2019. [Online]. 
Available: https://seer.cancer.gov/statfacts/html/colorect.html. [Accessed 11 October 2019]. 

[58] American Cancer Society Medical and Editorial Content Team, "Key Statistics for 
Colorectal Cancer," American Cancer Society, 21 February 2018. [Online]. Available: 
https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html. [Accessed 27 
April 2018]. 

[59] E. M. Ward, R. L. Sherman, S. J. Henley, A. Jemal, D. A. Siegel, E. J. Feuer, A. U. Firth, B. 
A. Kohler, S. Scott, J. Ma, R. N. Anderson, V. Benard and K. A. Cronin, "Annual Report to 
the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20–49 Years," 
JNCI: Journal of the National Cancer Institute, 2019.  

[60] A. Jemal, E. M. Ward, C. J. Johnson, K. A. Cronin, J. Ma, A. B. Ryerson, A. Mariotto, A. J. 
Lake, R. Wilson, R. L. Sherman, R. N. Anderson, S. J. Henley, B. A. Kohler, L. Penberthy, 
E. J. Feuer and H. K. Weir, "Annual Report to the Nation on the Status of Cancer, 1975–
2014, Featuring Survival," JNCI: Journal of the National Cancer Institute, vol. 109, no. 9, 
2017.  

[61] McGill Department of Pathology, "What is Pathology?," McGill University, 2018. [Online]. 
Available: https://www.mcgill.ca/pathology/about/definition. [Accessed 27 April 2018]. 

[62] National Cancer Institute, "Understanding Cancer Prognosis," National Cancer Institute, 24 
November 2014. [Online]. Available: https://www.cancer.gov/about-cancer/diagnosis-
staging/prognosis. [Accessed 27 April 2018]. 

[63] L. Simms, H. Barraclough and G. Ramaswamy, "Biostatistics Primer: What a Clinician 
Ought to Know—Prognostic and Predictive Factors," Journal of Thoracic Oncology, vol. 8, 
no. 6, pp. 808-813, 2013.  

[64] E. Nalejska, E. Mączyńska and M. A. Lewandowska, "Prognostic and Predictive 
Biomarkers: Tools in Personalized Oncology," Molecular Diagnostics and Therapy, vol. 18, 
no. 3, pp. 273-284, 2014.  

[65] V. N. Newitt, "Whole slide imaging for primary diagnosis: ‘Now it is happening’," CAPS 
Today, College of American Pathologists, May 2017. [Online]. Available: 
http://www.captodayonline.com/whole-slide-imaging-primary-diagnosis-now-happening/. 
[Accessed 21 April 2018]. 



 

97 

[66] Emory Winship Cancer Institute, "Cancer Digital Slide Archive," Emory Winship Cancer 
Institute, [Online]. Available: http://cancer.digitalslidearchive.net/. [Accessed 2 May 2018]. 

[67] M. Kamal, OmniPathology dataset, Pasadena: OmniPathology, 2017.  

[68] M. Zippi, G. De Toma, G. Minervini, C. Cassieri, R. Pica, D. Colarusso, S. Stock and P. 
Crispino, "Desmoplasia Influenced Recurrence of Disease and Mortality in Stage III 
Colorectal Cancer within Five Years after Surgery and Adjuvant Therapy," The Saudi 
Journal of Gastroenterology, vol. 23, no. 1, pp. 39-44, 2017.  

[69] J. Conti and G. Thomas, "The Role of Tumour Stroma in Colorectal Cancer Invasion and 
Metastasis," Cancers, vol. 3, no. 2, pp. 2160-2168, 2011.  

[70] P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White and P. J. Keely, 
"Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion," BMC 
Medicine, vol. 4, no. 38, 2006.  

[71] C. Rupp, M. Scherzer, A. Rudisch, C. Unger, C. Haslinger, M. Schweifer, M. Artaker, H. 
Nivarthi, R. Moriggl, M. Hengstschläger, D. Kerjaschki, W. Sommergruber, H. Dolznig and 
P. Garin-Chesa, "IGFBP7, a novel tumor stroma marker, with growth-promoting effects in 
colon cancer through a paracrine tumor–stroma interaction," Oncogene, vol. 34, pp. 815-
825, 2015.  

[72] A. Caporale, A. Ciardi, A. Vestri, M. Ruperto and A. Giuliani, "Quantitative Investigation 
of Desmoplasia as a Prognostic Indicator in Colorectal Cancer," Journal of Investigative 
Surgery, vol. 23, pp. 105-109, 2010.  

[73] "GlaS Warwick-QU Dataset," Department of Computer Science, University of Warwick, 
2015. [Online]. Available: 
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/. [Accessed 2019]. 

[74] J. van Laak , N. Rajpoot and D. Vossen, "The Promise Of Computational Pathology: Part 1," 
The Pathologist, no. 118, January 2018.  

[75] International Commission on Illumination, CIE L*a*b*, Vienna, 1976.  

[76] Faculty of Biological Sciences, University of Leeds, "The Histology Guide," University of 
Leeds, 2003. [Online]. Available: https://www.histology.leeds.ac.uk/what-is-
histology/H_and_E.php. [Accessed 2019]. 

[77] E. Reinhard, M. Ashikhmin, B. Gooch and P. Shirley, "Color transfer between images," 
IEEE Computer Graphics and Applications, vol. 21, no. 5, pp. 34-41, 2001.  



 

98 

[78] D. L. Ruderman, T. W. Cronin and C.-C. Chiao, "Statistics of cone responses to natural 
images: implications for visual coding," Journal of the optical Society of America, vol. 15, 
no. 8, pp. 2036-2045, 1998.  

[79] A. Goode, B. Gilbert, J. Harkes, D. Jukic and M. Satyanarayanan, "OpenSlide: A vendor-
neutral software foundation for digital pathology," Journal of Pathology Informatics, vol. 4, 
no. 1, p. 27, 2013.  

[80] D. Forsberg, "openslide-matlab," github, 2016. [Online]. Available: 
https://github.com/fordanic/openslide-matlab. [Accessed 2019]. 

[81] National Cancer Institute: Genomic Data Commons, GDC Data Transfer Tool, National 
Cancer Institute.  

[82] B. Helba, D. Gutman, D. Manthey, D. R. Chittajallu, J. Beezeley, L. Cooper, S. Lee, Z. 
Mullen and M. Amgad, "HistomicsTK," Digital Slide Archive, [Online]. Available: 
https://github.com/DigitalSlideArchive/HistomicsTK. [Accessed 2018]. 

[83] J.-S. Ou, W.-S. Chen, B. Pan and Y.-G. Li, "A new image inpainting algorithm based on 
DCT similar patches features," in 2016 12th International Conference on Computational 
Intelligence and Security (CIS), Wuxi, 2016.  

[84] F. Guichard, L. Moisan and J.-M. Morel, "A Review of P.D.E. Models in Image Processing 
and Image Analysis," Journal de Physique IV (Proceedings), vol. 12, no. 1, pp. 137-154, 
2002.  

[85] K. Sirinukunwattana, D. Snead and N. Rajpoot, "A Stochastic Polygons Model for Glandular 
Structures in Colon Histology Images," IEEE Transactions on Medical Imaging, 2015.  

[86] C.-B. Schönlieb, "Applying modern PDE techniques to digital image restoration," 
MathWorks, 2012. [Online]. Available: 
https://www.mathworks.com/company/newsletters/articles/applying-modern-pde-
techniques-to-digital-image-restoration.html. 

[87] F. Berntsson and G. Baravdish, "Coefficient identification in PDEs applied to image 
inpainting," Applied Mathematics and Computation, vol. 242, pp. 227-235, 2014.  

[88] J. Alexander, Artist, Fruit. [Art]. Flickr, 2013.  

[89] K. Sirinukunwattana, J. P. W. Pluim, H. Chen, X. Qi, P. Heng, Y. Guo, L. Wang, B. J. 
Matuszewski, E. Bruni, U. Sanchez, A. Böhm, O. Ronneberger, B. B. Cheikh, D. Racoceanu, 
P. Kainz, M. Pfeiffer, M. Urschler, D. R. J. Snead and N. Rajpoot, "Gland Segmentation in 
Colon Histology Images: The GlaS Challenge Contest," Medical Image Analysis, vol. 35, 
pp. 489-502, 2017.  



 

99 

[90] F. Bijl, Artist, Ingredients. [Art]. Flickr, 2007.  

[91] V. K. Alilou and F. Yaghmaee, "Non-texture image inpainting using histogram of oriented 
gradients," Journal of Visual Communication and Image Representation, vol. 48, pp. 43-53, 
October 2017.  

[92] A. Althouse, Artist, Yellow Flower. [Art]. Flickr.com, 2007.  

[93] P. W. Wong, "Image quantization, halftoning, and printing," in Handbook of Image & Video 
Processing, San Diego, Academic Press, 2000, pp. 657-667. 

 



 

100 

Appendices 

Appendix A. Inpainting with the Discrete 
Heat Transfer Equation 

 In Appendix A we derive the discretized boundary condition equations from section 2.1 

as well as the discrete diffusion equations used to inpaint the pixels within the boundary. As 

mentioned in section 2.1, the heat transfer equation is defined as ݑ௧ ൌ ௫௫ݑ ൅  ௬௬. We nowݑ

switch our focus to image processing and introduce the Laplacian of a two-dimensional function 

(or image), ݂ሺݕ,ݔሻ: 

ଶ݂׏ ൌ డమ௙

డ௫మ
൅ డమ௙

డ௬మ
.	 (A.1) 

Equation (A.1) is similar to the heat transfer equation but is not time-dependent. In fact, 

Laplace’s equation, ׏ଶ݂ ൌ 0, describes the steady state of the heat transfer equation, where ݐ ൌ

଴ݐ ൌ 0. This is the initial condition, or the initial temperature at each location. In image 

processing, the initial condition is the function ݂ሺݕ,ݔ,  ଴ሻ which is equivalent to the input imageݐ

before diffusion-based inpainting is applied. 

A.1  Preliminary Equations and Definitions 

 To aid in the derivation of equations (2.1) through (2.4), we first present some useful 

definitions. The derivative of a continuous, single-variable function ݂ሺݔሻ, is: 

డ௙

డ௫
ൌ lim

୦→଴

௙ሺ௫ା௛ሻି௙ሺ௫ሻ

௛
.	 (A.2) 
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Similarly, the partial derivative with respect to ݔ of a continuous, two-variable function ݂ሺݕ,ݔሻ, 

is: 

డ௙

డ௫
ൌ lim

୦→଴

௙ሺ௫ା௛,௬ሻି௙ሺ௫,௬ሻ

௛
.	 (A.3) 

The Taylor series expansion of a function ݂ about a point ݔ is, 

݂ሺݔ ൅ ݄ሻ ൌ ݂ሺݔሻ ൅ ݄݂ᇱሺݔሻ ൅ ௛మ

ଶ!
݂ᇱᇱሺݔሻ ൅ ௛య

ଷ!
݂ሺଷሻሺݔሻ ൅ ⋯. (A.4) 

Suppose that ݂ ൌ ݂ሺݔሻ is a twice continuously differentiable function. According to Taylor’s 

theorem, we can approximate the function with the second order Taylor series approximation, 

݂ሺݔ ൅ ݄ሻ ൌ ݂ሺݔሻ ൅ ݄݂ᇱሺݔሻ ൅ ௛మ

ଶ
݂ᇱᇱሺݔሻ.	 (A.5) 

Solving for ݂ᇱሺݔሻ, we get the forward difference approximation, 

݂ᇱሺݔሻ ൌ ௙ሺ௫ା௛ሻି௙ሺ௫ሻ

௛
െ ௛

ଶ
݂ᇱᇱሺݔሻ.	 (A.6) 

If we replace ݄ with െ݄ in equation (A.5) and again solve for ݂ᇱሺݔሻ, we get the backward 

difference approximation, 

݂ᇱሺݔሻ ൌ ௙ሺ௫ሻି௙ሺ௫ି௛ሻ

௛
൅ ௛

ଶ
݂ᇱᇱሺݔሻ.	 (A.7) 

Setting the forward and backward difference approximations equal to each other and solving for 

݂ᇱᇱሺݔሻ we have, 

௙ሺ௫ା௛ሻି௙ሺ௫ሻ

௛
െ ௛

ଶ
݂ᇱᇱሺݔሻ ൌ ௙ሺ௫ሻି௙ሺ௫ି௛ሻ

௛
൅ ௛

ଶ
݂ᇱᇱሺݔሻ, (A.8) 

  

݂ᇱᇱሺݔሻ ൌ ௙ሺ௫ା௛ሻିଶ௙ሺ௫ሻା௙ሺ௫ି௛ሻ

௛మ
.	 (A.9) 
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Similarly, for two variables, we utilize the forward difference approximation to solve for ௫݂: 

݂ሺݔ ൅ ݄, ሻݕ ൌ 	݂ሺݕ,ݔሻ ൅ ݄ ௫݂ሺݔ, ሻݕ ൅
௛మ

ଶ ௫݂௫ሺݕ,ݔሻ,	 (A.10) 

  

௙ሺ௫ା௛,௬ሻି௙ሺ௫,௬ሻ

௛
ൌ 	 ௫݂ሺݔ, ሻݕ ൅

௛మ

ଶ ௫݂௫ሺݔ,  ሻ, (A.11)ݕ

  

௫݂ሺݕ,ݔሻ ൌ
௙ሺ௫ା௛,௬ሻି௙ሺ௫,௬ሻ

௛
െ ௛మ

ଶ ௫݂௫ሺݔ,  ሻ. (A.12)ݕ

Likewise, we utilize the backward difference approximation to solve for ௫݂: 

݂ሺݔ െ ݄, ሻݕ ൌ ݂ሺݕ,ݔሻ െ ݄ ௫݂ሺݔ, ሻݕ ൅
௛మ

ଶ ௫݂௫ሺݕ,ݔሻ, (A.13) 

  

௙ሺ௫,௬ሻି௙ሺ௫ି௛,௬ሻ

௛
ൌ ௫݂ሺݕ,ݔሻ െ

௛

ଶ ௫݂௫ሺݕ,ݔሻ, (A.14) 

  

௫݂ሺݕ,ݔሻ ൌ
௙ሺ௫,௬ሻି௙ሺ௫ି௛,௬ሻ

௛
൅ ௛

ଶ ௫݂௫ሺݕ,ݔሻ,	 (A.15) 

Setting the first partial derivatives of the forward and backward difference approximations equal 

to each other, we have: 

௙ሺ௫ା௛,௬ሻି௙ሺ௫,௬ሻ

௛
െ ௛మ

ଶ ௫݂௫ሺݕ,ݔሻ ൌ
௙ሺ௫,௬ሻି௙ሺ௫ି௛,௬ሻ

௛
൅ ௛

ଶ ௫݂௫ሺݔ, 	,ሻݕ (A.16) 

  

௙ሺ௫ା௛,௬ሻିଶ௙ሺ௫,௬ሻା௙ሺ௫ି௛,௬ሻ

௛
ൌ ݄ ௫݂௫ሺݕ,ݔሻ, (A.17) 

  

௙ሺ௫ା௛,௬ሻିଶ௙ሺ௫,௬ሻା௙ሺ௫ି௛,௬ሻ

௛మ
ൌ ௫݂௫ሺݕ,ݔሻ, (A.18) 

  

௫݂௫ሺݔ, ሻݕ ൌ
௙ሺ௫ା௛,௬ሻିଶ௙ሺ௫,௬ሻା௙ሺ௫ି௛,௬ሻ

௛మ
.	 (A.19) 

 Now, we introduce a third variable, ݐ, which is the time component relevant to the heat-

transfer process and diffusion-based image inpainting. Consider the function ݂ሺݕ,ݔ,  ሻ, withݐ
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second-order Taylor series approximations. The forward and backward difference 

approximations, respectively, are: 

݂ሺݔ ൅ ݄, ,ݕ ሻݐ ൌ ݂ሺݕ,ݔ, ሻݐ ൅ ݄ ௫݂ሺݕ,ݔ, ሻݐ ൅
௛మ

ଶ ௫݂௫ሺݕ,ݔ, 	,ሻݐ (A.20) 

  

݂ሺݔ െ ݄, ,ݕ ሻݐ ൌ ݂ሺݕ,ݔ, ሻݐ െ ݄ ௫݂ሺݕ,ݔ, ሻݐ ൅
௛మ

ଶ ௫݂௫ሺݕ,ݔ, 	.ሻݐ (A.21) 

Although the time variable ݐ is in the third position of the function’s input tuple, which is 

associated with channel indices, we limit our derivation to two dimensional images and therefore 

recognize ݐ as descriptive of varying time rather than switching through color channels. 

 Building from equation (A.19), we have the time dependent equation: 

௫݂௫ሺݔ, ,ݕ ሻݐ ൌ
௙ሺ௫ା௛,௬,௧ሻିଶ௙ሺ௫,௬,௧ሻା௙ሺ௫ି௛,௬,௧ሻ

௛మ
,	 (A.22) 

where ݄ ൐ 0 and tiny. 

Now, we end up with the nice collection: 

௫݂௫ሺݔ, ,ݕ ሻݐ ൌ
௙ሺ௫ା௛,௬,௧ሻିଶ௙ሺ௫,௬,௧ሻା௙ሺ௫ି௛,௬,௧ሻ

௛మ
,	 (A.23) 

  

௬݂௬ሺݕ,ݔ, ሻݐ ൌ
௙ሺ௫,௬ା௞,௧ሻିଶ௙ሺ௫,௬,௧ሻା௙ሺ௫,௬ି௞,௧ሻ

௞మ
, (A.24) 

  

௧݂ሺݕ,ݔ, ሻݐ ൌ
௙ሺ௫,௬,௧ା௥ሻି௙ሺ௫,௬,௧ሻ

௥
. (A.25) 

Typically, ݄,݇, ݎ ൐ 0, are very small. However, in image processing, the spatial variables, ݄ and 

݇, must be discrete values since images cannot be represented as continuous signals. The 

distance from one pixel to the next is one. Thus, the practical version of our collection is: 

௫݂௫ሺݔ, ,ݕ ሻݐ ൌ ݂ሺݔ ൅ ,ݕ,1 ሻݐ െ 2݂ሺݔ, ,ݕ ሻݐ ൅ ݂ሺݔ െ ,ݕ,1 	,ሻݐ (A.26) 
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௬݂௬ሺݕ,ݔ, ሻݐ ൌ ݂ሺݕ,ݔ ൅ 1, ሻݐ െ 2݂ሺݕ,ݔ, ሻݐ ൅ ݂ሺݔ, ݕ െ 1,  ሻ, (A.27)ݐ

with ௧݂ሺݔ, ,ݕ  .ሻ remaining as defined in equation (A.25)ݐ

A.2  Boundary Conditions 

 We will now examine the boundary conditions for the example in Figure 2-1. The 

boundary conditions must be heeded before the interior of the missing region is inpainted. Once 

the one-pixel thick border is inpainted accordingly, it is not subjected to further reassignment 

over iterations as the interior of the boundary is. Therefore, since the time variable has no effect 

on the value of ݂ at the boundaries, we denote ݂ሺݕ,ݔ,  ሻ asݐ

݂ሺݕ,ݔሻ ൌ ଵ

ସ
൫݂ሺݔ ൅ ሻݕ,1 ൅ ݂ሺݔ െ ሻݕ,1 ൅ 	݂ሺݕ,ݔ ൅ 1ሻ ൅ ݂ሺݕ,ݔ െ 1ሻ൯.	 (A.28) 

This indicates spatial location information and we will maintain that ݐ ൒ 0. Suppose that the 

damage is confined to an ݉ ൈ ݊ rectangular region where ݔ ൌ ݅ is the top boundary of the 

damage, ݔ ൌ ݅ ൅ ݉ is the bottom boundary, ݕ ൌ ݆ is the left boundary, and ݕ ൌ ݆ ൅ ݊ is the right 

boundary. The boundary conditions are: 

݂ሺ݅,ݕሻ ൌ ݂ሺ݅ ൅ ሻݕ,݉ ൌ ݂ሺݔ, ݆ሻ ൌ ݂ሺݔ, ݆ ൅ ݊ሻ ൌ 0,	 (A.29) 

where ݅ ൑ ݔ ൑ ݅ ൅ ݉, ݆ ൑ ݕ ൑ ݆ ൅ ݊. 

 Missing or damaged pixels should not be used to interpolate other missing or damaged 

pixels. So, to heed the boundary conditions and maintain edges in the surrounding regions, we 

shift the first-derivative forward and backward difference equations and set them equal to each 

other. For the top boundary, ݔ ൌ ݅, we have: 
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௫݂ሺ݅,ݕሻ ൌ ݂ሺi൅ ሻݕ,1 െ ݂ሺi,ݕሻ,	 (A.30) 

  

௫݂ሺ݅,ݕሻ ൌ ݂ሺ݅,ݕሻ െ ݂ሺiെ  ሻ, (A.31)ݕ,1

  

݂ሺi൅ ሻݕ,1 െ ݂ሺ݅, ሻݕ ൌ ݂ሺ݅,ݕሻ െ ݂ሺiെ  ሻ, (A.32)ݕ,1

  

0 ൌ ݂ሺi൅ ሻݕ,1 െ 2݂ሺ݅, ሻݕ ൅ ݂ሺiെ  ሻ. (A.33)ݕ,1

Shift and solve for ݂ሺ݅,ݕሻ: 

0 ൌ ݂ሺ݅, ሻݕ െ 2݂ሺiെ ሻݕ,1 ൅ ݂ሺiെ 	,ሻݕ,2 (A.34) 

  

݂ሺ݅,ݕሻ ൌ 2݂ሺ݅ െ ሻݕ,1 െ ݂ሺ݅ െ  ሻ. (A.35)ݕ,2

Recall that this is specifically for the top boundary going downward into the missing region 

(assuming the pixel values located at ݂ሺ݅ െ ሻ and ݂ሺ݅ݕ,1 െ ݆ ሻ are known forݕ,2 ൑ ݕ ൑ ݆ ൅ ݊). 

To feed information from the exterior of the bottom boundary into the missing boundary above 

it, ݔ ൌ ݅ ൅ ݉, we again find the forward and backward difference equations then shift. 

௫݂ሺ݅ ൅ ݉, ሻݕ ൌ ݂ሺi൅m൅ ሻݕ,1 െ ݂ሺi൅m,ݕሻ,	 (A.36) 

  

௫݂ሺ݅ ൅ ݉, ሻݕ ൌ ݂ሺ݅ ൅ ݉, ሻݕ െ ݂ሺi൅mെ  ሻ, (A.37)ݕ,1

  

݂ሺi൅m൅ ሻݕ,1 െ ݂ሺ݅ ൅ ݉, ሻݕ ൌ ݂ሺ݅ ൅ ሻݕ,݉ െ ݂ሺi൅mെ  ሻ, (A.38)ݕ,1

  

0 ൌ ݂ሺi൅m൅ ሻݕ,1 െ 2݂ሺ݅ ൅ ݉, ሻݕ ൅ ݂ሺi൅mെ  ሻ. (A.39)ݕ,1

Shift and solve for ݂ሺ݅ ൅ ݉,  :ሻݕ

0 ൌ ݂ሺ݅ ൅ ݉ ൅ ሻݕ,2 െ 2݂ሺi൅m൅ ሻݕ,1 ൅ ݂ሺi൅m,ݕሻ,	 (A.40) 
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݂ሺ݅ ൅ ݉, ሻݕ ൌ 2݂ሺ݅ ൅ ݉ ൅ ሻݕ,1 െ ݂ሺ݅ ൅ ݉ ൅ 2, 	,ሻݕ (A.41) 

for ݆ ൑ ݕ ൑ ݆ ൅ ݊. Although it seems counterintuitive, it is important to remember that for the 

bottom boundary, the function must be shifted in the opposite direction of the top boundary so 

that known pixel values (݂ሺ݅ ൅ ݉ ൅ ሻ and ݂ሺ݅ݕ,1 ൅ ݉ ൅  ሻ) are utilized. To feed informationݕ,2

from the left into the missing region to the right, we adopt the same process as was done for the 

top and bottom boundaries and arrive at the equation: 

݂ሺݔ, ݆ሻ ൌ 2݂ሺݔ, ݆ െ 1ሻ െ ݂ሺݔ, ݆ െ 2ሻ,	 (A.42) 

where ݅ ൑ ݔ ൑ ݅ ൅ ݉. To feed information from the left into the missing region to the right, the 

equation is, 

݂ሺݔ, ݆ ൅ ݊ሻ ൌ 2݂ሺݔ, ݆ ൅ ݊ ൅ 1ሻ െ ݂ሺݔ, ݆ ൅ ݊ ൅ 2ሻ,	 (A.43) 

where ݅ ൑ ݔ ൑ ݅ ൅ ݉. Ideally, the boundary conditions ensure edge-continuity between the 

regions of known and unknown pixel values as the missing information is filled in. 

A.3  Inpainting the Interior Region 

 To inpaint the interior of the boundary, we now attain the discrete representation of the 

heat transfer equation, ௧݂ ൌ ௫݂௫ ൅ ௬݂௬, by substituting (A.25) through (A.27) for ௧݂, ௫݂௫, and ௬݂௬, 

respectively, then solving for ݂ሺݔ, ,ݕ ݐ ൅  :ሻݎ

௙ሺ௫,௬,௧ା௥ሻି௙ሺ௫,௬,௧ሻ

௥
ൌ ݂ሺݔ ൅ ,ݕ,1 ሻݐ െ 2݂ሺݕ,ݔ, ሻݐ ൅ ݂ሺݔ െ ,ݕ,1 ሻݐ ൅

																																																			݂ሺݕ,ݔ ൅ 1, ሻݐ െ 2݂ሺݕ,ݔ, ሻݐ ൅ ݂ሺݔ, ݕ െ 1,   ሻݐ
  

  

                              ൌ ݂ሺݔ ൅ ,ݕ,1 ሻݐ ൅ ݂ሺݔ െ 1, ,ݕ ሻݐ ൅ 	݂ሺݕ,ݔ ൅ 1, ሻݐ ൅
																							݂ሺݔ, ݕ െ 1, ሻݐ െ 4݂ሺݕ,ݔ,  ,ሻݐ

(A.44) 
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݂ሺݕ,ݔ, ݐ ൅ ሻݎ ൌ ݂ሺݔ, ,ݕ ሻݐ ൅ ݔ൫݂ሺݎ ൅ ,ݕ,1 ሻݐ ൅ ݂ሺݔ െ ,ݕ,1 ሻݐ ൅
	݂ሺݔ, ݕ ൅ 1, ሻݐ ൅ ݂ሺݕ,ݔ െ 1, ሻݐ െ 4݂ሺݕ,ݔ,  ,ሻ൯ݐ

(A.45) 

where ݎ is a small number between 0 and 1, such that a large number of steps (theoretically 

approaching infinity, although not in practice) in tandem with the small step size, ݎ, can be used 

to gradually fill in the missing information in an iterative process descriptive of heat transfer over 

time. Since the boundaries have already been repaired, they do not need to be included in the 

inpainting algorithm. Therefore, ݅ ൅ 1 ൑ ݔ ൑ ݅ ൅ ݉ െ 1 and ݆ ൅ 1 ൑ ݕ ൑ ݕ ൅ ݊ െ 1. 
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Appendix B. Total Variation 

B.1  Total Variation Flow 

 As discussed in section 2.3, total variation regularization is utilized to suppress noise in 

an image while preserving edges. In Appendix B we analyze the total variation flow equation 

and provide a short discussion with examples to reveal its influence at the pixel level. The total 

variation flow equation is 

௧݂ ൌ ݒ݅݀ ቀ ௙׏

|௙׏|
ቁ.	 (B.1) 

Here we provide relevant definitions to aid in forthcoming derivations. The divergence of a two-

dimensional function ݂ is defined as: 

ሺ݂ሻݒ݅݀ ൌ ׏ ∙ ݂	  

  

																						ൌ ർ డ
డ௫
, డ
డ௬
඀ ∙ ݂		  

  

               ൌ ௫݂ ൅ ௬݂. (B.2) 

The gradient of ݂ is the vector: 

݂׏ ൌ ۦ ௫݂, ௬݂ൿ,	 (B.3) 

and the norm (Euclidean) of the gradient of ݂ is: 
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|݂׏| ൌ ඥ ௫݂
ଶ ൅ ௬݂

ଶ.		 (B.4) 

With these definitions in mind, let us proceed with our derivation of ௧݂. Following from equation 

(B.1) we have: 

௧݂ ൌ ݒ݅݀ ቌ
ଵ

ට௙ೣమା௙೤
మ
〈 ௫݂, ௬݂〉ቍ		  

  

                ൌ డ

డ௫
ቌ

௙ೣ

ට௙ೣమା௙೤
మ
ቍ ൅

డ

డ௬
ቌ

௙೤

ට௙ೣమା௙೤
మ
ቍ (B.5) 

Component-wise expansion of the partial derivatives gives us: 

డ

డ௫
ቌ

௙ೣ

ට௙ೣమା௙೤
మ
ቍ ൌ

௙ೣ ೣට௙ೣమା௙೤
మି௙ೣమ௙ೣ ೣ൫௙ೣమା௙೤మ൯

ష
భ
మି௙ೣ ௙೤௙ೣ ೤൫௙ೣమା௙೤మ൯

ష
భ
మ

௙ೣమା௙೤
మ ,	 (B.6) 

and 

డ

డ௬
ቌ

௙೤

ට௙ೣమା௙೤
మ
ቍ ൌ

௙೤೤ට௙ೣమା௙೤
మି௙೤మ௙೤೤൫௙ೣమା௙೤మ൯

ష
భ
మି௙ೣ ௙೤௙ೣ ೤൫௙ೣమା௙೤మ൯

ష
భ
మ

௙ೣమା௙೤
మ .	 (B.7) 

Substituting back into equation (B.5) we have: 

௧݂ ൌ
௙ೣ ೣට௙ೣమା௙೤

మି௙ೣమ൫௙ೣమା௙೤మ൯
ష
భ
మ௙ೣ ೣି௙ೣ ௙೤௙ೣ ೤൫௙ೣమା௙೤మ൯

ష
భ
మ

௙ೣమା௙೤
మ ൅

																																														
௙೤೤ට௙ೣమା௙೤

మି௙೤మ൫௙ೣమା௙೤మ൯
ష
భ
మ௙೤೤ି௙ೣ ௙೤௙ೣ ೤൫௙ೣమା௙೤మ൯

ష
భ
మ

௙ೣమା௙೤
మ 		

 

  

             ൌ ଵ

௙ೣమା௙೤
మ ൬ ௫݂௫ඥ ௫݂

ଶ ൅ ௬݂
ଶ െ ௫݂

ଶ൫ ௫݂
ଶ ൅ ௬݂

ଶ൯
ିభ
మ
௫݂௫ ൅ ௬݂௬ඥ ௫݂

ଶ ൅ ௬݂
ଶ െ

௬݂
ଶ൫ ௫݂

ଶ ൅ ௬݂
ଶ൯

ିభ
మ
௬݂௬ െ 2 ௫݂ ௬݂ ௫݂௬൫ ௫݂ ൅ ௬݂൯

ିభ
మ൰		
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ൌ ଵ

൫௙ೣమା௙೤
మ൯
య
మ
൫ ௫݂௫൫ ௫݂

ଶ ൅ ௬݂
ଶ൯ െ ௫݂

ଶ
௫݂௫ ൅ ௬݂௬൫ ௫݂

ଶ ൅ ௬݂
ଶ൯ െ ௬݂

ଶ
௬݂௬ െ

2 ௫݂ ௬݂ ௫݂௬൯  

 

  

ൌ ଵ

൫௙ೣమା௙೤
మ൯
య
మ
൫ ௫݂௫൫ ௫݂

ଶ ൅ ௬݂
ଶ െ ௫݂

ଶ൯ ൅ ௬݂௬൫ ௫݂
ଶ ൅ ௬݂

ଶ െ ௬݂
ଶ൯ െ 2 ௫݂ ௬݂ ௫݂௬൯   

  

ൌ ଵ

൫௙ೣమା௙೤
మ൯
య
మ
൫ ௫݂௫ ௬݂

ଶ ൅ ௬݂௬ ௫݂
ଶ െ 2 ௫݂ ௬݂ ௫݂௬൯  (B.8) 

 Now that we have arrived at this expanded representation of ௧݂, we will transition to the 

discrete version by incorporating equations (A.26) and (A.27) as well as the following new 

equations: 

௫݂ሺݕ,ݔ, ሻݐ ൌ
ଵ

ଶ
൫݂ሺݔ ൅ ,ݕ,1 ሻݐ െ ݂ሺݔ െ ,ݕ,1 	,ሻ൯ݐ (B.9) 

  

௬݂ሺݔ, ,ݕ ሻݐ ൌ
ଵ

ଶ
൫݂ሺݕ,ݔ ൅ 1, ሻݐ െ ݂ሺݕ,ݔ െ 1,  ሻ൯, (B.10)ݐ

  

௫݂௬ሺݕ,ݔ, ሻݐ ൌ
ଵ

ସ
൫݂ሺݔ ൅ ݕ,1 ൅ 1, ሻݐ െ ݂ሺݔ െ ݕ,1 ൅ 1, ሻݐ െ

																																															݂ሺݔ ൅ ݕ,1 െ 1, ሻݐ ൅ ݂ሺݔ െ ݕ,1 െ 1,  .ሻ൯ݐ
(B.11) 

Equations (B.9) and (B.10) are derived using the first order forward and backward difference 

approximations for ݂ሺݕ,ݔ,  for (B.10), solving ݕ for (B.9) and with respect to ݔ ሻ with respect toݐ

each for ݂ሺݕ,ݔ,  ሻ, and setting them equal to each other. The process is similar to the way thatݐ

(A.26) and (A.27) were found in Appendix A. Equation (B.11) is derived using the first order 

forward and backward difference approximations for ௫݂ሺݔ, ,ݕ  solving each ,ݕ ሻ with respect toݐ

for the like term, 
ଵ

ଶ
൫݂ሺݔ ൅ ,ݕ,1 ሻݐ െ ݂ሺݔ െ ,ݕ,1  ሻ൯, and setting them equal to each other. Afterݐ

solving for ௫݂௬ሺݕ,ݔ,  ሻ, the two partial derivative terms on the right side of the equation areݐ

substituted using (B.9) as follows: 
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௫݂௬ሺݕ,ݔ, ሻݐ ൌ
ଵ

ଶ
൫ ௫݂ሺݕ,ݔ ൅ 1, ሻݐ െ ௫݂ሺݕ,ݔ െ 1, 		ሻ൯ݐ  

  

ൌ ଵ

ଶ
൬
ଵ

ଶ
൫݂ሺݔ ൅ ݕ,1 ൅ 1, ሻݐ െ ݂ሺݔ െ ݕ,1 ൅ 1, ሻ൯ݐ െ ଵ

ଶ
൫݂ሺݔ ൅ ݕ,1 െ

1, ሻݐ െ ݂ሺݔ െ ݕ,1 െ 1, 	.ሻ൯൰ݐ
(B.12) 

Simplifying (B.12) gives equation (B.11). 

 It can be difficult to intuitively appreciate what is truly happening within the context of 

inpainting when beholding the expanded, discrete representation of the equation. By representing 

the pixel to be inpainted and its neighboring pixels in a consolidated way, we have a chance at 

understanding how influential each location is in pixel-value reassignment. Let us now examine 

the interior of the region to be inpainted. For simplicity, we start by renaming each pixel with a 

letter as follows: 

I H G 

F E D 

C B A 

Figure B-1 Pixel names and locations. 

The scheme is detailed in Table B-1. 

Table B-1 Letter names associated with pixel locations 

A ݂ሺݔ ൅ ݕ,1 ൅ 1, ݕ,ݔሻ  F ݂ሺݐ െ 1,  ሻݐ

B ݂ሺݔ ൅ ,ݕ,1 ݔሻ G ݂ሺݐ െ ݕ,1 ൅ 1,  ሻݐ

C ݂ሺݔ ൅ ݕ,1 െ 1, ݔሻ  H ݂ሺݐ െ ,ݕ,1  ሻݐ

D ݂ሺݔ, ݕ ൅ 1, ݔሻ I ݂ሺݐ െ ݕ,1 െ 1,  ሻݐ
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E ݂ሺݕ,ݔ,    ሻݐ

 

Proceeding with our naming conventions, we have Table B-2, which presents the associated 

partial differential equations in terms of the individual pixels in Table B-1. 

Table B-2 Partial differential equations in terms of individual pixels 

௫݂ ൌ
ଵ

ଶ
ሺܤ െ ሻ  ௫݂௬ܪ ൌ

ଵ

ସ
ሺܣ െ ܩ െ ܥ ൅   ሻܫ

௬݂ ൌ
ଵ

ଶ
ሺܦ െ ሻ  ௫݂ܨ

ଶ ൌ ଵ

ସ
ሺܤଶ െ ܪܤ2 ൅   ଶሻܪ

௫݂௫ ൌ ܤ െ ܧ2 ൅ ௬݂  ܪ
ଶ ൌ ଵ

ସ
ሺܦଶ െ ܨܦ2 ൅   ଶሻܨ

௬݂௬ ൌ ܦ െ ܧ2 ൅    ܨ

Making appropriate substitutions we have: 

௧݂ ൌ
భ
ర
ሺ஻ିଶாାு	ሻሺ஽ିிሻమାభ

ర
ሺ஽ିଶாାிሻሺ஻ିுሻమିభ

ఴ
ሺ஻ିுሻሺ஽ିிሻሺ஺ିீି஼ାூሻ

ቀభ
ర
ሺ஻ିுሻమ	ାభ

ర
ሺ஽ିிሻమቁ

య
మ

		  

  

ൌ ଶሺ஻ାுିଶாሻሺ஽ିிሻమାଶሺ஽ାிିଶாሻሺ஻ିுሻమିሺ஻ିுሻሺ஽ିிሻሺ஺ାூିீି஼ሻ

ሺሺ஻ିுሻమ	ାሺ஽ିிሻమሻ
య
మ

.  (B.13) 

 Noting that the pixel values are between 0 and 1 for double precision images, we are 

looking at a scheme where squaring these pixel values gives small resulting values, also between 

0 and 1. The denominator will always be positive and acts as a rescaling factor based on the 

distances between the vertical pixels, ܤ and ܪ, and horizontal pixels, ܦ and ܨ. The only location 

the signs of ሺܤ െ ܦሻ and ሺܪ െ  .ሻ matter is in the last term of the numeratorܨ
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 If there is a diagonal edge forming at the pixel to be inpainted, the values of the 

neighborhood may resemble the following: 

I=.025 H=.025 G=.05 

F=.05 E=.05 D=.1 

C=.05 B=.1 A=.1 

Figure B-2 Sample pixel values and locations corresponding to diagonal edge. 

In this case, ܤ െ ܦ ,ܪ െ ܣ and ,ܨ ൅ ܫ െ ܩ െ  are positive, ensuring the last term of the ܥ

numerator is positive, and is therefore subtracted from the first two terms. The values of ܤ ൅

ܪ െ ܦ and ܧ2 ൅ ܨ െ  are also positive. The numerator in this example works out to be ܧ2

2ሺ. 025ሻሺ. 05ሻଶ ൅ 2ሺ. 05ሻሺ. 075ሻଶ െ ሺ. 075ሻሺ. 05ሻሺ. 025ሻ ൌ .000125൅ .0005625െ .00009375  

       ൌ .000125൅ .0005625െ .00009375 

                  ൌ .0005975  

The denominator is ሺሺ. 05ሻଶ ൅ ሺ. 075ሻଶሻ
య
మ ൌ ሺ. 008125ሻ

య
మ ൌ .0007323776. Thus, ܧ is assigned 

the new value . 81583598091. With a large value now assigned to ܧ what will happen in 

subsequent iterations is that ܧ will get exponentially larger (could be in negative or positive 

direction). To counter this, a term is added to the denominator to make it greater, thus the value 

of ܧ will be smaller. 
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 Suppose we add . 01 to the denominator in the previous example. The new denominator 

will be . 0107323776, and thus ܧ ൌ .଴଴଴ହଽ଻ହ

.଴ଵ଴଻ଷଶଷ଻଻଺
ൌ 0.0556726592. Compared to the initial value 

of ܧ ൌ .05, this is a much more suitable reassignment value. 
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Appendix C. Additional Segmentation 
Results 

C.1 U-Net Gland Segmentation Results Test Set B 

 The following images are the gland segmentation results for all twenty images in test set 

B of [73]. The first column contains input images, the center column contains the U-Net 

predictions, and the right column contains the ground truth segmentation masks. 
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C.2 Histogram Thresholding Results on Image from Test Set B 

 Figure C-1 corresponds to the last set of images in Appendix C.1 after the input image 

has been adjusted using Reinhard normalization in HistomicsTK [82]. 
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Figure C-1 Segmentation of cell nuclei using our automatic method. From left to right, top to 

bottom: (a) Slide background and very thin biopsy tissue, (b) stromal tissue with individual cells 
masked, (c) glands and cells in stroma, (d) isolated cell nuclei within the glands and stroma, and 

(e) further isolated cell nuclei solely within the glands. 

 

(a) Background artifact isolated 
using our segmentation method 

(b) Stromal tissue isolated using 
our segmentation method 

(c) Tumors and cells in the 
stroma isolated using our 

segmentation method 

(d) Cell nuclei isolated by transforming the 
normalized input image to the CIELAB color 

space, applying the mask in part (c), and 
removing the light blue pixels from the result 

(e) Isolated cell nuclei within the glands by 
applying the CNN gland segmentation prediction 

to the results in part (d)  



 

120 

C.3 U-Net and Histogram Thresholding Results on Images from OmniPathology Dataset 
 

 
Figure C-2 Two-part segmentation of cell nuclei using our automatic method. From left to right, 
top to bottom: (a) Region of interest taken from OmniPathology dataset [67] at 20X magnitude, 

(b) gland segmentation results from trained U-Net, (c) non-glandular structures, (d) stromal tissue 
with individual cells masked, (e) glands and cells in stroma, (f) slide background, (g) cell nuclei 
within the glands and stroma, (h) further isolated cell nuclei solely within the glands/tumors, and 
(i) cell nuclei solely within the stroma. See Figure 6-13 for a close-up comparison of (e) and (i). 

 

(a) Input image (b) Glands segmentation (c)  Inverted version of (b) 

(d)  Stroma (e)  Tumors and cells (f)  Slide background 

(g) Cell nuclei (h) Cell nuclei in tumors (i) Cell nuclei in stroma 
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Figure C-3 From left to right, top to bottom: (a) Region of interest taken from OmniPathology 

dataset [66] at 20X magnitude, (b) gland segmentation results from trained U-Net, (c) non-
glandular structures, (d) stromal tissue with individual cells masked, (e) glands and cells in 

stroma, (f) cells in stroma (tumors masked). 

 
Figure C-4 From left to right: Close-up of input image in Figure C-3, cell segmentation using 

histogram thresholding algorithm, and cell nuclei segmentation by filtering out light pixels in CIE 
L*a*b* color space. Both segmentation images are useful depending on the task. Smooth muscle 

cells are visible in the center image and masked in the second, which favors cells with dark 
nuclei. 

(a) Input image (b) Glands segmentation (c)  Inverted version of (b) 

(d)  Stroma (e)  Tumors and cells (f)  Cells in stroma from 
applying the mask in (c) to (e) 
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C.4 Automatic thresholding algorithm applied to image of normal colon tissue 
 

 
Figure C-5 Histogram and segmentation results for normalized image of benign colon tissue. 

Image taken from test set A of [73]. 
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Appendix D. PConvNN Architecture 

 
Figure D-1 U-Net-like architecture schematic for region hiding system. 
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