6,725 research outputs found

    Adaptive Fractal and Wavelet Image Denoising

    Get PDF
    The need for image enhancement and restoration is encountered in many practical applications. For instance, distortion due to additive white Gaussian noise (AWGN) can be caused by poor quality image acquisition, images observed in a noisy environment or noise inherent in communication channels. In this thesis, image denoising is investigated. After reviewing standard image denoising methods as applied in the spatial, frequency and wavelet domains of the noisy image, the thesis embarks on the endeavor of developing and experimenting with new image denoising methods based on fractal and wavelet transforms. In particular, three new image denoising methods are proposed: context-based wavelet thresholding, predictive fractal image denoising and fractal-wavelet image denoising. The proposed context-based thresholding strategy adopts localized hard and soft thresholding operators which take in consideration the content of an immediate neighborhood of a wavelet coefficient before thresholding it. The two fractal-based predictive schemes are based on a simple yet effective algorithm for estimating the fractal code of the original noise-free image from the noisy one. From this predicted code, one can then reconstruct a fractally denoised estimate of the original image. This fractal-based denoising algorithm can be applied in the pixel and the wavelet domains of the noisy image using standard fractal and fractal-wavelet schemes, respectively. Furthermore, the cycle spinning idea was implemented in order to enhance the quality of the fractally denoised estimates. Experimental results show that the proposed image denoising methods are competitive, or sometimes even compare favorably with the existing image denoising techniques reviewed in the thesis. This work broadens the application scope of fractal transforms, which have been used mainly for image coding and compression purposes

    Complex Discrete Wavelet Transform-Based Image Denoising

    Get PDF
    Dual tree complex discrete wavelet transform is implemented for denoising as an important image processing application. Two wavelet trees are used, one generating the real part of the wavelet coefficients tree and the other generating the imaginary part tree. A general computer program computing two dimensional dual tree complex wavelet transform is written using MatLab V.7.0. for a general (NxN) two dimensional signal. This paper introduces firstly a proposed method of computing one and twodimensional dual tree complex wavelet transform .The proposed method reduces heavily processing time for decomposition of image keeping or overcoming the quality of reconstructed images. Also, the inverse procedures of all the above transform for multi- dimensional cases verified. Secondly, many techniques are implemented for denoising of gray scale image. A new threshold method is proposed and compared with the other thresholding methods. For hard thresholding, PSNR gives (13.548) value while the PSNR was increased in the proposed soft thresholding, it gives (14.1734) PSNR value when the noise variance is (20). Denoising schemes are tested on Peppers noise image to find its effect on denoising application. The noisy version has SNR equals to (11.9373 dB), the denoising image using WT has SNR equals to (17.4661 dB), the denoising image using SWT has SNR equals to (18.1459 dB), the denoising image using WPT has SNR equals to (19.3640 dB), the denoising image using Complex Discrete Wavelet Transform has SNR equals to (21.9138 dB) using hard threshold and has SNR equals to (22.1393 dB) using soft threshold. Matlab V.7.0 is used for simulation

    Denosing of natural image based on non-linear threshold filtering using discrete wavelet transformation

    Get PDF
    The denoising (noise reduction) of a natural image contaminated with Additive and white noise of Gaussian model is an important preprocessing step for many visualization techniques and still a challenging problem for researchers. This paper treats with threshold estimation technique to reduce the noise in natural images by using on discrete wavelet transformation. Calculating the value of thresholding, the way it works in the algorithm (derivation of thresholding function) and the type of wavelet mother functions, are pivotal issues in the field of denoising based wavelet approach. In this study the result shows that the proposed denoising algorithm based on semi-soft threshold algorithm outperforms the traditional wavelet denoising techniques in terms of visual quality and subjective scales, where it preserved the edges, ridges details of the reconstructed image and the quality of visualization shape as well. The execution time was taken into consideration as well; it shows that the new algorithm presents competitive results compared with the standard methods such as Wiener filter, SureShrink, Oracle Shrink, BM3D and BayesShrink. To accomplish the denoising process, our algorithm was compared with the various the standard denoising algorithms that were mentioned earlier

    Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising

    Get PDF
    Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .<br />In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet denoising stage . The choice of the threshold estimation is carried out by analyzing the statistical parameters of the wavelet sub band coefficients like standard deviation, arithmetic mean and geometrical mean . The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by this method .Experimental results on test image by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image restoration , we have compared this with various restoration methods like Wiener filter alone and inverse filter

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a&grave; trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    Wavelet-based denoising by customized thresholding

    Get PDF
    The problem of estimating a signal that is corrupted by additive noise has been of interest to many researchers for practical as well as theoretical reasons. Many of the traditional denoising methods have been using linear methods such as the Wiener filtering. Recently, nonlinear methods, especially those based on wavelets have become increasingly popular, due to a number of advantages over the linear methods. It has been shown that wavelet-thresholding has near-optimal properties in the minimax sense, and guarantees better rate of convergence, despite its simplicity. Even though much work has been done in the field of wavelet-thresholding, most of it was focused on statistical modeling of the wavelet coefficients and the optimal choice of the thresholds. In this paper, we propose a custom thresholding function which can improve the denoised results significantly. Simulation results are given to demonstrate the advantage of the new thresholding function

    Hyperanalytic denoising

    Get PDF
    A new threshold rule for the estimation of a deterministic image immersed in noise is proposed. The full estimation procedure is based on a separable wavelet decomposition of the observed image, and the estimation is improved by introducing the new threshold to estimate the decomposition coefficients. The observed wavelet coefficients are thresholded, using the magnitudes of wavelet transforms of a small number of "replicates" of the image. The "replicates" are calculated by extending the image into a vector-valued hyperanalytic signal. More than one hyperanalytic signal may be chosen, and either the hypercomplex or Riesz transforms are used, to calculate this object. The deterministic and stochastic properties of the observed wavelet coefficients of the hyperanalytic signal, at a fixed scale and position index, are determined. A "universal" threshold is calculated for the proposed procedure. An expression for the risk of an individual coefficient is derived. The risk is calculated explicitly when the "universal" threshold is used and is shown to be less than the risk of "universal" hard thresholding, under certain conditions. The proposed method is implemented and the derived theoretical risk reductions substantiated

    On the effect of image denoising on galaxy shape measurements

    Full text link
    Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.Comment: Accepted for publication in A&A. 8 pages, 5 figure
    corecore