7,251 research outputs found

    Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising

    Get PDF
    AbstractInspired by papers of Vese–Osher [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and Osher–Solé–Vese [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002] we present a wavelet-based treatment of variational problems arising in the field of image processing. In particular, we follow their approach and discuss a special class of variational functionals that induce a decomposition of images into oscillating and cartoon components and possibly an appropriate ‘noise’ component. In the setting of [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002], the cartoon component of an image is modeled by a BV function; the corresponding incorporation of BV penalty terms in the variational functional leads to PDE schemes that are numerically intensive. By replacing the BV penalty term by a B11(L1) term (which amounts to a slightly stronger constraint on the minimizer), and writing the problem in a wavelet framework, we obtain elegant and numerically efficient schemes with results very similar to those obtained in [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002]. This approach allows us, moreover, to incorporate general bounded linear blur operators into the problem so that the minimization leads to a simultaneous decomposition, deblurring and denoising

    Image Decomposition and Separation Using Sparse Representations: An Overview

    Get PDF
    This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by reviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck , proposed a novel decomposition method—morphological component analysis (MCA)—based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called morphological components, that are morphologically distinct, e.g., sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will provide an overview the generalized MCA introduced by the authors in and as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Fluid flow dynamics under location uncertainty

    Get PDF
    We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems
    • …
    corecore