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Abstract

Inspired by papers of Vese–Osher [Modeling textures with total variation minimization and oscillating p
in image processing, Technical Report 02-19, 2002] and Osher–Solé–Vese [Image decomposition and re
using total variation minimization and theH−1 norm, Technical Report 02-57, 2002] we present a wavelet-b
treatment of variational problems arising in the field of image processing. In particular, we follow their ap
and discuss a special class of variational functionals that induce a decomposition of images into oscilla
cartoon components and possibly an appropriate ‘noise’ component. In the setting of [Modeling textures w
variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Im
composition and restoration using total variation minimization and theH−1 norm, Technical Report 02-57, 2002
the cartoon component of an image is modeled by aBV function; the corresponding incorporation ofBV penalty
terms in the variational functional leads to PDE schemes that are numerically intensive. By replacingBV

penalty term by aB1
1(L1) term (which amounts to a slightly stronger constraint on the minimizer), and writin

problem in a wavelet framework, we obtain elegant and numerically efficient schemes with results very si
those obtained in [Modeling textures with total variation minimization and oscillating patterns in image proc
Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimizat
theH−1 norm, Technical Report 02-57, 2002]. This approach allows us, moreover, to incorporate general b
linear blur operators into the problem so that the minimization leads to a simultaneous decomposition, de
and denoising.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One important problem in image processing is the restoration of the ‘true’ image from an obser
In almost all applications the observed image is a noisy and blurred version of the true image. In pr
the restoration task can be understood as an inverse problem, i.e. one can attack it by solving
variational problem.

In this paper we focus on a special class of variational problems which induce a decompos
images in oscillating and cartoon components; the cartoon part is ideally piecewise smooth with p
abrupt edges and contours; the oscillation part, on the other hand, ‘fills’ in the smooth regions
cartoon with texture-like features. Several authors, e.g., [19,20], propose to model the cartoon com
by the spaceBV which induces a penalty term that allows edges and contours in the reconstructed
images. However, the minimization of variational problems of this type usually results in PDE-
schemes that are numerically intensive.

The main goal of this paper is to provide a computationally thriftier algorithm by using a wavelet-
scheme that solves not the same but a very similar variational problem, in which theBV -constraint, which
cannot easily be expressed in the wavelet domain, is replaced by aB1

1(L1)-term, i.e. a slightly stricte
constraint (sinceB1

1(L1) ⊂ BV in two dimensions). Moreover, we can allow the involvement of gen
linear bounded blur operators, which extends the range of application. By applying recent results,
we show convergence of the proposed scheme.

In order to give a brief description of the underlying variational problems, we recall the me
proposed in [19,20]. They follow the idea of Y. Meyer [18], proposed as an improvement on th
variation framework of Rudin et al. [21]. In principle, the models can be understood as a decomp
of an imagef into f = u + v, whereu represents the cartoon part andv the texture part. In the Vese
Osher model, see [20], the decomposition is induced by solving

inf
u,g1,g2

Gp(u,g1, g2), whereGp(u,g1, g2) =
∫
Ω

|∇u| + λ
∥∥f − (u + divg)

∥∥2
L2(Ω)

+ µ
∥∥|g|∥∥

Lp(Ω)
,

(1.1)

with f ∈ L2(Ω), Ω ⊂ R
2, andv = divg = div(g1, g2). The first term is the total variation ofu. If u ∈ L1

and|∇u| is a finite measure onΩ , thenu ∈ BV (Ω). This space allows discontinuities, therefore ed
and contours generally appear inu. The second term represents the restoration discrepancy; to penav,
the third term approximates (by takingp finite) the norm of the space of oscillating functions introdu
by Y. Meyer (withp = ∞) which is in some sense dual toBV (Ω). (For details we refer the reader
[18].) Settingp = 2 andg = ∇P + Q, whereP is a single-valued function andQ is a divergence-free
vector field, it is shown in [19] that thev-penalty term can be expressed by

∥∥|g|∥∥
L2(Ω)

=
(∫ ∣∣∇(�)−1v

∣∣2
)1/2

= ‖v‖H−1(Ω).
Ω
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(TheH−1 calculus is allowed as long as we deal with oscillatory texture/noise components that ha
mean.) With these assumptions, the variational problem (1.1) simplifies to solving

inf
u,g1,g2

G2(u, v), whereG2(u, v) =
∫
Ω

|∇u| + λ
∥∥f − (u + v)

∥∥2
L2(Ω)

+ µ‖v‖H−1(Ω). (1.2)

In general, one drawback is that the minimization of (1.1) or (1.2) leads to numerically intensive sc
Instead of solving problem (1.2) by means of finite difference schemes, we propose a wavele

treatment. We are encouraged by the fact that elementary methods based on wavelet shrinka
similar extremal problems whereBV (Ω) is replaced by the Besov spaceB1

1(L1(Ω)). SinceBV (Ω)

cannot be simply described in terms of wavelet coefficients, it is not clear thatBV (Ω) minimizers can
be obtained in this way. Yet, it is shown in [2], exploitingB1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω))-weak,

that methods using Haar systems provide nearBV (Ω) minimizers. So far there exists no similar res
for general (in particular smoother) wavelet systems. We shall nevertheless use wavelets that ha
smoothness/vanishing moments than Haar wavelets, because we expect them to be better sui
modeling of the smooth parts in the cartoon image. Though we may not obtain provable ‘near-beBV -
minimizers,’ we hope to nevertheless not be ‘too far off.’ Limiting ourselves to the casep = 2, replacing
BV (Ω) by B1

1(L1(Ω)), and, moreover, extending the range of applicability by incorporating a bou
linear operatorK , we end up with the following variational problem:

inf
u,v

Ff (v,u), whereFf (v,u) = ∥∥f − K(u + v)
∥∥2

L2(Ω)
+ γ ‖v‖2

H−1(Ω)
+ 2α|u|B1

1(L1(Ω)).

This paper is organized as follows. In Section 2 we recall some basic facts on wavelets, in Se
the numerical scheme is developed and convergence is shown, in Section 4 we introduce som
refinements on the scheme, and finally, in Section 5 we present some numerical results.

2. Preliminaries on wavelets

In this section, we briefly recall some facts on wavelets that are needed later on. Especially im
for our approach are the smoothness characterization properties of wavelets: one can determine
bership of a function in many different smoothness functional spaces by examining the decay pr
of its wavelets coefficients. For a comprehensive introduction and overview on this topic we woul
the reader to the abundant literature, see, e.g., [1,4–6,12,13,15,23].

SupposeH is a Hilbert space. Let{Vj } be a sequence of closed nested subspaces ofH whose union is
dense inH while their intersection is zero. In addition,V0 is shift-invariant andf ∈ Vj ↔ f (2j ·) ∈ V0,
so that the sequence{Vj } forms a multiresolution analysis. In many cases of practical relevance the s
Vj are spanned by single scale basesΦj = {φj,k: k ∈ Ij } which are uniformly stable. Successive
updating a current approximation inVj to a better one inVj+1 can be facilitated if stable basesΨj =
{ψj,k: k ∈ Jj } for some complementWj of Vj in Vj+1 are available. Hence, anyfn ∈ Vn has an alternative
multiscale representationfn = ∑

k∈I0
f0,kφ0,k + ∑n

j=0

∑
k∈Jj

fj,kψj,k. The essential constraint on th
choice ofWj is thatΨ = ⋃

j Ψj forms a Riesz-basis ofH , i.e. everyf ∈ H has a unique expansion

f =
∑ ∑

〈f, ψ̃j,k〉ψj,k such that‖f ‖H ∼
(∑ ∑∣∣〈f, ψ̃j,k〉

∣∣2
) 1

2

, (2.1)

j k∈Jj j k∈Jj
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whereΨ̃ forms a bi-orthogonal system and is in fact also a Riesz-basis forH , see, e.g., [5].
For our approach we assume that any function (image)f ∈ L2(I ) can be extended periodically

all of R
2. HereI is assumed to be the unit square(0,1]2 = Ω . Throughout this paper we only consid

compactly supported tensor product wavelet systems (based on Daubechies’ orthogonal wavelets
or symmetric bi-orthogonal wavelets by Cohen, Daubechies, and Feauveau, see [1]).

We are finally interested in characterizations of Besov spaces, see, e.g., [23]. Forβ > 0 and 0<

p,q � ∞ the Besov spaceBβ
q (Lp(Ω)) of orderβ is the set of functions

Bβ
q

(
Lp(Ω)

) = {
f ∈ Lp(Ω): |f |

B
β
q (Lp(Ω))

< ∞}
,

where|f |
B

β
q (Lp(Ω))

= (
∫ ∞

0 (t−βωl(f ; t)p)q dt/t)1/q andωl denotes thelth modulus of smoothness,l > β.
These spaces are endowed with the norm‖f ‖

B
β
q (Lp(Ω))

= ‖f ‖Lp(Ω) + |f |
B

β
q (Lp(Ω))

. (For p < 1, this is
not a norm, strictly speaking, and the Besov spaces are complete topological vector spaces but n
Banach spaces, see [11] for details, including the characterization of these spaces by wavelet
is important to us is that one can determine whether a function is inB

β
q (Lp(Ω)) simply by examining

its wavelet coefficients. The casep = q, on which we shall focus, is the easiest. Suppose thatφ hasR

continuous derivatives andψ has vanishing moments of orderM . Then, as long asβ < min(R,M), one
has in, two dimensions, for allf ∈ B

β
p (Lp(Ω)), the following norm equivalence (denoted by∼)

|f |
B

β
p (Lp(Ω))

∼
(∑

λ

2|λ|sp|fλ|p
)1/p

with fλ := 〈f, ψ̃λ〉, s = β + 1− 2/p and|λ| = j. (2.2)

In what follows, we shall always use the equivalent weighted�p-norm of the{fλ} instead of the standar
Besov norm; with a slight abuse of notation we shall continue to denote it by the same symbol, ho
Whenp = q = 2, the spaceBβ

2 (L2(Ω)) is the Bessel potential spaceHβ(Ω). In analogy with the specia
case of Bessel potential spacesHβ(Ω), the Besov spaceBβ

p (Lp(Ω)) with β < 0 can be viewed as th

dual space ofBβ ′
p′ (Lp′(Ω)), whereβ ′ = −β and 1/p + 1/p′ = 1.

3. Image decomposition

As stated in Section 1, we aim to solve

inf
u,v

Ff (v,u), whereFf (v,u) = ∥∥f − K(u + v)
∥∥2

L2(Ω)
+ γ ‖v‖2

H−1(Ω)
+ 2α|u|B1

1(L1(Ω)). (3.1)

At first, we may observe the following:

Lemma 3.1. If the null-spaceN (K) of the operatorK is trivial, then the variational problem(3.1)has
a unique minimizer.

This can be seen as follows:

Ff

(
µ(v,u) + (1− µ)(v′, u′)

) − µFf

(
(v,u)

) − (1− µ)Ff

(
(v′, u′)

)
= −µ(1− µ)

(∥∥K(u − u′ + v − v′)
∥∥2

L2(Ω)
+ γ ‖v − v′‖2

H−1(Ω)

)
+ 2α

(∣∣µu + (1− µ)u′∣∣ − µ|u| 1 − (1− µ)|u′| 1

)
(3.2)
B1
1(L1(Ω)) B1(L1(Ω)) B1(L1(Ω))
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with 0 < µ < 1. Since the Banach norm is convex the right-hand side of (3.2) is nonpositive, i.Ff

is convex. SinceN (K) = {0}, the term‖K(u − u′ + v − v′)‖ can be zero only ifu − u′ + v − v′ = 0,
moreover,‖v − v′‖ is zero only ifv − v′ = 0. Hence, (3.2) is strictly convex.

In order to solve this problem by means of wavelets we have to switch to the sequence space f
tion. WhenK is the identity operator the problem simplifies to

inf
u,v

{∑
λ∈J

(∣∣fλ − (uλ + vλ)
∣∣2 + γ 2−2|λ||vλ|2 + 2α|uλ|

)}
, (3.3)

whereJ = {λ = (i, j, k): k ∈ Jj , j ∈ Z, i = 1,2,3} is the index set used in our separable setting.
minimization of (3.3) is straightforward, since it decouples into easy one-dimensional minimiza
This results in an explicit shrinkage scheme, presented also in [8].

Proposition 3.1. Let f be a given function. The functional(3.3) is minimized by the parametrized cla
of functionsṽγ,α and ũγ,α given by the following nonlinear filtering of the wavelet series off :

ṽγ,α =
∑
λ∈Jj0

(
1+ γ 2−2|λ|)−1[

fλ − Sα(22|λ|+γ )/γ (fλ)
]
ψλ

and

ũγ,α =
∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑
λ∈Jj0

Sα(22|λ|+γ )/γ (fλ)ψλ,

whereSt denotes the soft-shrinkage operator,Jj0 all indicesλ for scales larger thanj0 andIj0 the indices
λ for the fixed scalej0.

In the case whereK is not the identity operator the minimization process results in a coupled sy
of nonlinear equations for the wavelet coefficientsuλ andvλ, which is not as straightforward to solv
To overcome this problem, we adapt an iterative approach. As in [7] we derive the iterative alg
from a sequence of so-called surrogate functionals that are each easy to minimize, and for wh
hopes that the successive minimizers have the minimizing element of (3.1) as limit. However, c
to [7] our variational problem has mixed quadratic and nonquadratic penalties. This requires a
different use of surrogate functionals. In [9,10] a similaru + v problem is solved by an approach th
combinesu andv into one vector-valued function(u, v). This leads to alternating iterations with resp
to u andv simultaneously. It can be shown that the minimizers of the resulting alternating algo
strongly converge to the desired unique solution, [10].

We will follow a different approach here, in which we first solve the quadratic problem forv, and then
construct an iteration scheme foru. To this end, we introduce the differential operatorT := (−�)1/2.
Settingv = T h the variational problem (3.1) reads as

inf
(u,h)

Ff (h,u) with Ff (h,u) = ∥∥f − K(u + T h)
∥∥2

L2(Ω)
+ γ ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)). (3.4)

Minimizing (3.4) with respect tow results in

h̃γ (f,u) = (T ∗K∗KT + γ )−1T ∗K∗(f − Ku)

or equivalently

ṽ (f,u) = T (T ∗K∗KT + γ )−1T ∗K∗(f − Ku).
γ
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Inserting this explicit expression for̃hγ (f,u) in (3.4) and defining

fγ := Tγ f, T 2
γ := I − KT (T ∗K∗KT + γ )−1T ∗K∗, (3.5)

we obtain

Ff

(
h̃γ (f,u),u

) = ‖fγ − Tγ Ku‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)). (3.6)

Thus, the remaining task is to solve

inf
u
Ff

(
h̃γ (f,u),u

)
, whereFf

(
h̃γ (f,u),u

) = ‖fγ − Tγ Ku‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)). (3.7)

The corresponding variational equations in the sequence space representation are

∀λ:
(
K∗T 2

γ Ku
)
λ
− (

K∗fγ

)
λ
+ α sign(uλ) = 0.

This gives a coupled system of nonlinear equations foruλ. For this reason we construct surrogate fu
tionals that remove the influence ofK∗T 2

γ Ku. First, we choose a constantC such that‖K∗T 2
γ K‖ < C.

Since‖Tγ ‖ � 1, it suffices to require that‖K∗K‖ < C. Then we define the functional

Φ(u;a) := C‖u − a‖2
L2(Ω) − ∥∥Tγ K(u − a)

∥∥2
L2(Ω)

which depends on an auxiliary elementa ∈ L2(Ω). We observe thatΦ(u,a) is strictly convex inu for
anya. SinceK can be rescaled, we limit our analysis without loss of generality to the caseC = 1. We
finally addΦ(u;a) to Ff (h̃γ (f,u),u) and obtain the following surrogate functional:

Fsur
f

(
h̃γ (f, a), u;a) = Ff

(
h̃γ (f,u),u

) + Φ(u;a)

=
∑

λ

{
u2

λ − 2uλ

(
a + K∗T 2

γ (f − Ka)
)
λ
+ 2α|uλ|

}
+ ‖fγ ‖2

L2(Ω) + ‖a‖2
L2(Ω) − ‖Tγ Ka‖2

L2(Ω). (3.8)

The advantage of minimizing (3.8) is that the variational equations foruλ decouple. The summands
(3.8) are differentiable inuλ expect at the point of nondifferentiability. The variational equations for e
λ are now given by

uλ + α sign(uλ) = (
a + K∗T 2

γ (f − Ka)
)
λ
.

This results in an explicit soft-shrinkage operation foruλ

uλ = Sα

((
a + K∗T 2

γ (f − Ka)
)
λ

)
.

The next proposition summarizes our findings; it is the specialization to our particular case of
general theorem in [7].

Proposition 3.2. SupposeK is a linear bounded operator modeling the blur, withK mapsL2(Ω) to
L2(Ω) and‖K∗K‖ < 1. Moreover, assumeTγ is defined as in(3.5) and the functionalFsur

f (h̃, u;a) is
given by

Fsur
f

(
h̃γ (f,u),u;a) = Ff

(
h̃γ (f,u),u

) + Φ(u;a).

Then, for arbitrarily chosena ∈ L2(Ω), the functionalFsur
f (h̃γ (f,u),u;a) has a unique minimizer in

L2(Ω). The minimizing element is given by

ũ = S
(
a + K∗T 2(f − Ka)

)
,
γ,α α γ
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where the operatorSα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ.

The proof follows from [7]. One can now define an iterative algorithm by repeated minimization ofFsur
f :

u0 arbitrary; un = argmin
u

(
Fsur

f

(
h̃γ (f,u),u;un−1

))
, n = 1,2, . . . . (3.9)

The convergence result of [7] can again be applied directly:

Theorem 3.1. SupposeK is a linear bounded operator, with‖K∗K‖ < 1, and thatTγ is defined as in
(3.5). Then the sequence of iterates

un
γ,α = Sα

(
un−1

γ,α + K∗T 2
γ

(
f − Kun−1

γ,α

))
, n = 1,2, . . . ,

with arbitrarily chosenu0 ∈ L2(Ω), converges in norm to a minimizerũγ,α of the functional

Ff

(
h̃γ (f,u),u

) = ∥∥Tγ (f − Ku)
∥∥2

L2(Ω)
+ 2α|u|B1

1(L1(Ω)).

If N (Tγ K) = {0}, then the minimizer̃uγ,α is unique, and every sequence of iterates converges toũγ,α in
norm.

Combining the result of Theorem 3.1 and the representation forṽ we summarize how the image ca
finally be decomposed in cartoon and oscillating components.

Corollary 3.1. Assume thatK is a linear bounded operator modeling the blur, with‖K∗K‖ < 1. More-
over, ifTγ is defined as in(3.5)and if ũγ,α is the minimizing element of(3.7), obtained as a limit ofun

γ,α

(see Theorem3.1), then the variational problem

inf
(u,h)

Ff (h,u) with Ff (h,u) = ∥∥f − K(u + T h)
∥∥2

L2(Ω)
+ γ ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class(
ũγ,α, (T

∗K∗KT + γ )−1T ∗K∗(f − Kũγ,α)
)
.

whereũγ,α is the unique limit of the sequence

un
γ,α = Sα

(
un−1

γ,α + K∗T 2
γ

(
f − Kun−1

γ,α

))
, n = 1,2, . . . .

4. Refinements: using redundancy and adaptivity to reduce artifacts

The nonlinear filtering rule of Proposition 3.1 gives explicit descriptions ofṽ andũ that are computed
by fast discrete wavelet schemes. However, nonredundant filtering very often creates artifacts
of undesirable oscillations, which manifest themselves as ringing and edge blurring. Poor dire
selectivity of traditional tensor product wavelet bases likewise cause artifacts. In this section we
various refinements on the basic algorithm that address this problem. In particular, we shall use re
translation invariant schemes, complex wavelets, and additional edge dependent penalty weight
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4.1. Translation invariance by cycle-spinning

Assume that we are given an image with 2M rows of 2M pixels, where the gray value of each pixel giv
an average off on a square 2−M ×2−M , which we denote byf M

k , with k a double index running throug
all the elements of{0,1, . . . ,2M −1}×{0,1, . . . ,2M −1}. A traditional wavelet transform then comput
f

j

l , d
j,i

l with j0 � j � M , i = 1,2,3 andl ∈ {0,1, . . . ,2j − 1} × {0,1, . . . ,2j − 1} for eachj , where the
f

j

l stand for an average off on mostly localized on (and indexed by) the squares[l12−j , (l1 + 1)2−j ] ×
[l22−j , (l2 + 1)2−j ], and thed

j,i

l stand for the different species of wavelets (in two dimensions, t
are three) in the tensor product multiresolution analysis. Because the corresponding wavelet ba
translation invariant, Coifman and Donoho proposed in [3] to recover translation invariance by ave
over the 22(M+1−j0) translates of the wavelet basis; since many wavelets occur in more than one o
translated bases (in fact, eachψj,i,k(x − 2Mn) in exactly 22(j+1−j0) different bases), the average over
these bases uses only(M + 1− j0)22M different basis functions (and not 24(M+1−j0) = number of base
× number of elements in each basis). This approach is calledcycle-spinning. Writing, with a slight abuse
of notation,ψj,i,k+2j−Mn for the translateψj,i,k(x − 2Mn), this average can then be written as

f M = 2−2(M+1−j0)

2M−1∑
l1,l2=0

{
f

j0

l2−M+j0
φj0,l2−M+j0 +

M−1∑
j=j0

22(j−j0)

3∑
i=1

d
j,i

l2−M+j ψj,i,l2−M+j

}
.

Carrying out our nonlinear filtering in each of the bases and averaging the result then corresp
applying the corresponding nonlinear filtering on the (much smaller number of) coefficients in th
expression. This is the standard way to implement thresholding on cycle-spinned representation

The resulting sequence space representation of the variational functional (3.3) has to be adapt
redundant representation off . To this end, we note that the Besov penalty term takes the form

|f |
B

β
p (Lp)

∼
( ∑

j�j0,i,k

2(js+2(j−M))
∣∣〈f, ψ̃j,i,k2j−M 〉∣∣p)1/p

.

The norms‖ · ‖2
L2

and‖ · ‖2
H−1 change similarly. Consequently, we obtain the same minimization rul

with respect to a richer class of wavelet coefficients.

4.2. Directional sensitivity by frequency projections

It has been shown by several authors [14,16,22] that if one treats positive and negative freq
separately in the one-dimensional wavelet transform (resulting in complex wavelets), the dire
selectivity of the corresponding two-dimensional multiresolution analysis is improved. This can b
by applying the following orthogonal projections:

P+ :L2 → L2,+ = {
f ∈ L2: suppf̂ ⊆ [0,∞)

}
,

P− :L2 → L2,− = {
f ∈ L2: suppf̂ ⊆ (−∞,0]}.

The projectorsP+ andP− may be either applied tof or to {φ, φ̃} and {ψ, ψ̃}. In a discrete frame
work these projections have to be approximated. This has been done in different ways in the lit
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In [16,22] Hilbert transform pairs of wavelets are used. In [14]f is projected (approximately) by mult
plying with shifted generator symbols in the frequency domain. We follow the second approach, i

(P +f )∧(ω) := f̂ (ω)H(ω − π/2) and (P −f )∧(ω) := f̂ (ω)H

(
ω + π

2

)
,

wheref denotes the function to be analyzed andH is the low-pass filter for a conjugate quadratu
mirror filter pair. One then has

f̂ (ω) = (B+P +f )∧(ω) + (B−P −f )∧(ω), (4.1)

where the backprojections are given by

(B+f )∧ = f̂ H

(
· − π

2

)
and (B−f )∧ = f̂ H

(
· + π

2

)
,

respectively. This technique provides us with a simple multiplication scheme in Fourier, or equiva
a convolution scheme in time domain. In a separable two-dimensional framework the projections
be carried out in each of the two frequency variables, resulting in four approximate projection op
P ++, P +−, P −+, P −−. Becausef is real, we have

(P ++f )∧(−ω) = (P −−f )∧(ω) and (P +−f )∧(−ω) = (P −+f )∧(ω),

so that the computation ofP −+f andP −−f can be omitted. Consequently, the modified variatio
functional takes the form

Ff (u, v) = 2
(∥∥P ++(

f − (u + v)
)∥∥2

L2
+ ∥∥P +−(

f − (u + v)
)∥∥2

L2

)
+ 2λ

(‖P ++v‖2
H−1 + ‖P +−v‖2

H−1

) + 2α|u|B1
1(L1)

�
(∥∥P ++(

f − (u + v)
)∥∥2

L2
+ ∥∥P +−(

f − (u + v)
)∥∥2

L2

) + 2λ
(‖P ++v‖2

H−1 + ‖P +−v‖2
H−1

)
+ 4α

(|P ++u|B1
1(L1)

+ |P +−u|B1
1(L1)

)
,

which can be minimized with respect to{P ++v,P ++u} and{P +−v,P +−u} separately. The projection
are be complex-valued, so that the thresholding operator needs to be adapted. Parameterizing th
coefficients by modulus and angle and minimizing yields the following filtering rules for the projec
of ṽγ,α andũγ,α (where·· stands for any combination of+, −)

P ··ṽγ,α =
∑
λ∈Jj0

(
1+ γ 2−2|λ|)−1[

P ··fλ − Sα(22|λ|+γ )/γ

(|P ··fλ|
)
eiω(P ··f )

]
ψλ

and

P ··ũγ,α =
∑
k∈Ij0

〈P ··f, φ̃j0,k〉φj0,k +
∑
λ∈Jj0

(
1+ γ 2−2|λ|)−1

Sα(22|λ|+γ )/γ

(|P ··fλ|
)
eiω(P ··f )ψλ.

Finally, we have to apply the backprojections to obtain the minimizing functions

ṽBP
γ,α = B++P ++ṽγ,α + B−−P ++ṽγ,α + B+−P +−ṽγ,α + B−+P +−ṽγ,α

and

ũBP
γ,α = B++P ++ũγ,α + B−−P ++ũγ,α + B+−P +−ũγ,α + B−+P +−ũγ,α.
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4.3. Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a positive w
sequencewλ in theH−1 penalty term. Consequently, we aim at minimizing a slightly modified sequ
space functional∑

λ∈J

(∣∣fλ − (uλ + vλ)
∣∣2 + γ 2−2|λ|wλ|vλ|2 + 2α|uλ| · 1{λ∈Jj0}

)
. (4.2)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑
λ∈Jj0

(
1+ γwλ2−2|λ|)−1[

fλ − Sα(22|λ|+γwλ)/γwλ
(fλ)

]
ψλ

and

ũw
γ,α =

∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑
λ∈Jj0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ.

The main goal is to introduce a control parameter that depends on the local structure off . The local
penalty weightwλ should be large in the presence of an edge and small otherwise; the result
weighting is to enhance the sensitivity ofu near edges. In order to do this, we must first localize
edges, which we do by a procedure similar to an edge detection algorithm in [17]. This schem
on the analysis of the cycle-spinned wavelet coefficientsfλ at or near the same location but at differe
scales. We expect that thefλ belonging to fine decomposition scales contain informations of edges
localized) as well as oscillating components. Oscillating texture components typically show up
scales only; edges, on the other hand, leave a signature of larger wavelet coefficients through
range of scales. We thus apply the following not very sophisticated edge detector. Suppose thatf ∈ VM

andje denotes some ‘critical’ scale, then for a certain range of scales|λ| = |(i, j, k)| = j ∈ {j0, . . . , j1 −
je − 2, j1−je −1} we mark all positionsk where|fλ| is larger than a level dependent threshold param
tj . Here the valuetj is chosen proportional to the mean value of all wavelet coefficients of levelj . We
say that|fλ| represents an edge ifk was marked for allj ∈ {j0, . . . , j1 − je − 2, j1 − je − 1}. Finally, we
adaptively choose the penalty sequence by setting

wλ =
{

Θλ if j ∈ {M − 1, . . . , j1 − je} andk was marked as an edge,
ϑλ otherwise,

whereϑλ is close to one andΘλ is much larger in order to penalize the correspondingvλ’s.

5. Numerical experiments

In this section, we present some numerical experiments obtained with our wavelet-based sche
We start with the case whereK is the identity operator. In order to show how the nonlinear (redund

wavelet scheme acts on piecewise constant functions we decompose a geometric image (rep
cartoon components only) with sharp contours, see Fig. 1. We observe thatũ represents the cartoon pa
very well. The texture componentṽ (plus a constant for illustration purposes) contains only some
weak contour structures.
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Fig. 1. From left to right: initial geometric imagef , ũ, ṽ +150, computed with Db3 in the translation invariant setting,α = 0.5,
γ = 0.01.

Fig. 2. Left: noisy segment of a woman image; middle and right: first two scales ofS(f ) inducing the weight functionw.

Next, we demonstrate the performance of the Haar shrinkage algorithm successively incorp
redundancy and local penalty weights. The redundancy is implemented by cycle spinning as des
Section 4.1. The local penalty weights are computed the following way: first, we apply the shr
operatorS to f with a level dependent threshold (the threshold per scale is equal to two times the
value of all the wavelet coefficients of the scale under consideration). Second, the nonzero va
Sthreshold(fλ) per scale indicate wherewλ is set toΘλ = 1+ C ′ (hereC ′ = 10, moreover, we setwλ equal
to ϑλ = 1 elsewhere). The coefficientsSthreshold(fλ) for the first two scales of a segment of a woman im
are visualized in Fig. 2. In Fig. 3, we present our numerical results. The upper row shows the o
and the noisy image. The next row visualizes the results for nonredundant Haar shrinkage (Met
The third row shows the same but incorporating cycle spinning (Method B), and the last row

Table 1
Signal-to-noise ratios of the several decomposition methods (Haar shrinkage, translation invari-
ant Haar shrinkage, translation invariant Haar shrinkage with edge enhancement)

Haar shrinkage SNR(f,fε) SNR(f,u + v) SNR(f,u)

Method A 20.7203 18.3319 16.0680
Method B 20.7203 21.6672 16.5886
Method C 20.7203 23.8334 17.5070
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Fig. 3. Top: initial and noisy image; 2nd row: nonredundant Haar shrinkage (Method A); 3rd row: translation invarian
shrinkage (Method B); bottom: translation invariant Haar shrinkage with edge enhancement (Method C); 2nd–4th row
to right: ũ, ṽ + 150 andũ + ṽ, α = 0.5, γ = 0.0001, computed with Haar wavelets and critical scaleje = −3.
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Fig. 4. From left to right: initial fabric imagef , ũ, ṽ + 150, computed with Db4 incorporating frequency projections,α = 0.8,
γ = 0.002.

Fig. 5. Top from left to right: initial woman imagef , ũ, andṽ + 150, computed with Db10 (Method C),α = 0.5, γ = 0.002;
bottom from left to right:u andv obtained by the Vese–Osher TV model and thev component obtained by the Vese–Solé–Os
H−1 model.

the incorporation of cycle spinning and local penalty weights. Each extension of the shrinkage m
improves the results. This is also be confirmed by comparing the signal-to-noise ratios (which
defined as follows: SNR(f, g) = 10 log10(‖f ‖2/‖f − g‖2)), see Table 1.

The next experiment is done on a fabric image, see Fig. 4. But in contrast to the examples be
present here the use of frequency projection as introduced in Section 4.2. The numerical resu
convincingly that the texture component can be also well separated from the cartoon part.



14 I. Daubechies, G. Teschke / Appl. Comput. Harmon. Anal. 19 (2005) 1–16

–Osher
Fig. 5.

th the
xture
bserved
hrinkage
ven
for the
Table 2
Comparison of computational cost of the PDE- and the wavelet-based methods

Data basis “Barbara” image (512× 512 pixel)

Hardware architecture PC
Operating system Linux
OS distribution Redhat 7.3
Model PC, AMD Athlon-XP
Memory size (MB) 1024
Processor speed (MHz) 1333
Number of CPUs 1

Computational cost (average over 10 runs)

PDE scheme in Fortran (compiler f77) 56.67 s
Wavelet shrinkage Method A (Matlab) 4.20 s
Wavelet shrinkage Method B (Matlab) 24.78 s
Wavelet shrinkage Method C (Matlab) 26.56 s

Fig. 6. Top from left to right: initial imagef , blurred imageKf ; bottom from left to right: deblurred̃u, deblurredṽ + 150,
deblurredũ + ṽ, computed with Db3 using the iterative approach,α = 0.2, γ = 0.001.

In order to compare the performance with the Vese–Osher TV model and with the Vese–Solé
H−1 model we apply our scheme to a woman image (the same that was used in [19,20]), see
We obtain very similar results as obtained with the TV model proposed in [20]. Compared wi
results obtained with theH−1 model proposed in [19] we observe that our reconstruction of the te
component contains much less cartoon information. In terms of computational cost we have o
that even in the case of applying cycle spinning and edge enhancement our proposed wavelet s
scheme is less time consuming than the Vese–Solé–OsherH−1 restoration scheme, see Table 2, e
when the wavelet method is implemented in Matlab, which is slower than the compiled version
Vese–Solé–Osher scheme.
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We end this section with presenting an experiment whereK is not the identity operator. In our pa
ticular caseK is a convolution operator with Gaussian kernel. The implementation is simply do
Fourier space. The upper row in Fig. 6 shows the originalf and the blurred imageKf . The lower row
visualizes the results: the cartoon componentũ, the texture component̃v, and the sum of both̃u + ṽ.
One may clearly see that the deblurred imageũ + ṽ contains (after a small number of iterations) mo
small scale details thanKf . This definitely shows the capabilities of the proposed iterative deblu
scheme (3.9).
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