55 research outputs found

    Implicit Fixed-point Proximity Framework for Optimization Problems and Its Applications

    Get PDF
    A variety of optimization problems especially in the field of image processing are not differentiable in nature. The non-differentiability of the objective functions together with the large dimension of the underlying images makes minimizing the objective function theoretically challenging and numerically difficult. The fixed-point proximity framework that we will systematically study in this dissertation provides a direct and unified methodology for finding solutions to those optimization problems. The framework approaches the models arising from applications straightforwardly by using various fixed point techniques as well as convex analysis tools such as the subdifferential and proximity operator. With the notion of proximity operator, we can convert those optimization problems into finding fixed points of nonlinear operators. Under the fixed-point proximity framework, these fixed point problems are often solved through iterative schemes in which each iteration can be computed in an explicit form. We further explore this fixed point formulation, and develop implicit iterative schemes for finding fixed points of nonlinear operators associated with the underlying problems, with the goal of relaxing restrictions in the development of solving the fixed point equations. Theoretical analysis is provided for the convergence of implicit algorithms proposed under the framework. The numerical experiments on image reconstruction models demonstrate that the proposed implicit fixed-point proximity algorithms work well in comparison with existing explicit fixed-point proximity algorithms in terms of the consumed computational time and accuracy of the solutions

    CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    Full text link
    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \cite{Dong2013X} and that of the data-driven tight frames for image denoising \cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \cite{Dong2013X} especially in recovering some subtle structures in the images

    BATUD: Blind Atmospheric TUrbulence Deconvolution

    Get PDF
    A new blind image deconvolution technique is developed for atmospheric turbulence deblurring. The originality of the proposed approach relies on an actual physical model, known as the Fried kernel, that quantifies the impact of the atmospheric turbulence on the optical resolution of images. While the original expression of the Fried kernel can seem cumbersome at first sight, we show that it can be reparameterized in a much simpler form. This simple expression allows us to efficiently embed this kernel in the proposed Blind Atmospheric TUrbulence Deconvolution (BATUD) algorithm. BATUD is an iterative algorithm that alternately performs deconvolution and estimates the Fried kernel by jointly relying on a Gaussian Mixture Model prior of natural image patches and controlling for the square Euclidean norm of the Fried kernel. Numerical experiments show that our proposed blind deconvolution algorithm behaves well in different simulated turbulence scenarios, as well as on real images. Not only BATUD outperforms state-of-the-art approaches used in atmospheric turbulence deconvolution in terms of image quality metrics, but is also faster

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Sparsity Promoting Regularization for Effective Noise Suppression in SPECT Image Reconstruction

    Get PDF
    The purpose of this research is to develop an advanced reconstruction method for low-count, hence high-noise, Single-Photon Emission Computed Tomography (SPECT) image reconstruction. It consists of a novel reconstruction model to suppress noise while conducting reconstruction and an efficient algorithm to solve the model. A novel regularizer is introduced as the nonconvex denoising term based on the approximate sparsity of the image under a geometric tight frame transform domain. The deblurring term is based on the negative log-likelihood of the SPECT data model. To solve the resulting nonconvex optimization problem a Preconditioned Fixed-point Proximity Algorithm (PFPA) is introduced. We prove that under appropriate assumptions, PFPA converges to a local solution of the optimization problem at a global O (1/k) convergence rate. Substantial numerical results for simulation data are presented to demonstrate the superiority of the proposed method in denoising, suppressing artifacts and reconstruction accuracy. We simulate noisy 2D SPECT data from two phantoms: hot Gaussian spheres on random lumpy warm background, and the anthropomorphic brain phantom, at high- and low-noise levels (64k and 90k counts, respectively), and reconstruct them using PFPA. We also perform limited comparative studies with selected competing state-of-the-art total variation (TV) and higher-order TV (HOTV) transform-based methods, and widely used post-filtered maximum-likelihood expectation-maximization. We investigate imaging performance of these methods using: Contrast-to-Noise Ratio (CNR), Ensemble Variance Images (EVI), Background Ensemble Noise (BEN), Normalized Mean-Square Error (NMSE), and Channelized Hotelling Observer (CHO) detectability. Each of the competing methods is independently optimized for each metric. We establish that the proposed method outperforms the other approaches in all image quality metrics except NMSE where it is matched by HOTV. The superiority of the proposed method is especially evident in the CHO detectability tests results. We also perform qualitative image evaluation for presence and severity of image artifacts where it also performs better in terms of suppressing staircase artifacts, as compared to TV methods. However, edge artifacts on high-contrast regions persist. We conclude that the proposed method may offer a powerful tool for detection tasks in high-noise SPECT imaging
    • …
    corecore