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Abstract

A variety of optimization problems especially in the field of image processing are not

differentiable in nature. The non-differentiability of the objective functions together with

the large dimension of the underlying images makes minimizing the objective function the-

oretically challenging and numerically difficult. The fixed-point proximity framework that

we will systematically study in this dissertation provides a direct and unified methodology

for finding solutions to those optimization problems. The framework approaches the models

arising from applications straightforwardly by using various fixed point techniques as well as

convex analysis tools such as the subdifferential and proximity operator.

With the notion of proximity operator, we can convert those optimization problems into

finding fixed points of nonlinear operators. Under the fixed-point proximity framework,

these fixed point problems are often solved through iterative schemes in which each iteration

can be computed in an explicit form. We further explore this fixed point formulation, and

develop implicit iterative schemes for finding fixed points of nonlinear operators associated

with the underlying problems, with the goal of relaxing restrictions in the development of

solving the fixed point equations. Theoretical analysis is provided for the convergence of

implicit algorithms proposed under the framework. The numerical experiments on image

reconstruction models demonstrate that the proposed implicit fixed-point proximity algo-

rithms work well in comparison with existing explicit fixed-point proximity algorithms in

terms of the consumed computational time and accuracy of the solutions.
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Chapter 1

Introduction

1.1 Problem Statement

In this dissertation, the optimization problem of our interest is to minimize a sum of

convex functions composed with linear operators

min
x∈Rn

N∑
i=1

fi(Aix), (P0)

where Rn denotes the usual n-dimensional Euclidean space, Ai is an mi × n matrix, and

fi : Rmi → (−∞,+∞] is proper, lower semi-continuous and convex, i = 1, 2, . . . , N .

The optimization problem (P0) is motivated by many applications including image pro-

cessing and machine learning. Some examples of its applications are shown as follows.

(i) Applications in image processing

In image processing, an observed image z degraded by blurring or/and noise can be

modeled as z = Kx + η, where x represents the unknown image to be recovered,

K represents the measurement process, and η represents the additive noise. Image

reconstruction models for approximating x are usually formulated as a sum of one data

fidelity term and at least one regularization term. The data fidelity term measures,
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adapting to the noise type of η, the similarity between the observed image z and the

desired image x. The regularization term is included to explore the prior structures

of the underlying image. The most popular choice of the regularization term in image

processing is the total variation [10,74] defined as

‖ · ‖TV = ψ ◦D,

where D is a first order difference matrix, and ψ is the `1 norm ‖ · ‖1 or a certain

linear combination of the `2 norm ‖ · ‖2 in R2 [32, 51]. Besides the total variation

regularization, there are other regularization terms such as the framelet regulariza-

tion term [7, 8, 47], which is defined as the `1 norm of the framelet coefficients of the

underlying image under a framelet transformation.

In each of the following image reconstruction models, the first term is corresponding

to the data fidelity term, the second term (and the third term if any) is corresponding

to the regularization term, and λ > 0 and µ > 0 are model parameters.

• Rudin-Osher-Fatemi (ROF) Model [74]: The model is designed to restore an

image contaminated by Gaussian noise, and can be written as problem (P0) with

f1 = λ
2
‖ · −z‖2

2, A1 = I, f2 = ψ,A2 = D, i.e.,

min
x

λ

2
‖x− z‖2

2 + ‖x‖TV . (M1)

• L1-TV Denoising Model [12, 65]: The model is designed to restore an image

contaminated by impulsive noise (or called pepper-and-salt noise), and can be

written as problem (P0) with f1 = λ‖ · −z‖1, A1 = I, f2 = ψ,A2 = D, i.e.,

min
x
λ‖x− z‖1 + ‖x‖TV . (M2)
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• L2-TV Image Restoration Model [2, 13, 67]: The model is designed to restore a

blurry image contaminated by Gaussian noise, and can be written as problem

(P0) with f1 = λ
2
‖ · −z‖2

2, A1 = K, f2 = ψ,A2 = D, i.e.,

min
x

λ

2
‖Kx− z‖2

2 + ‖x‖TV . (M3)

• L1-TV Image Restoration Model [22,41]: The model is designed to restore a blurry

image contaminated by impulsive noise, and can be written as problem (P0) with

f1 = λ‖ · −z‖1, A1 = K, f2 = ψ,A2 = D, i.e.,

min
x
λ‖Kx− z‖1 + ‖x‖TV . (M4)

• Framelet Based Image Reconstruction Models [6, 34, 54]: The models are similar

to the total variation based image reconstruction models mentioned above, except

that the total variation regularization term is replaced by the framelet regular-

ization term [7, 8], which can be written as a composition of the `1 norm ‖ · ‖1

and a linear operator D where D represents a tight frame system generated from

framelets [47].

• MR Image Reconstruction Model [46, 58,59,84]: The model is designed to recon-

struct an MR image x that is sparse in the wavelet domain. Let Φ be a given

sampling matrix, b be observed measurements, and W be a wavelet transform.

The model can be written as problem (P0) with f1 = 1
2
‖ · −b‖2

2, A1 = Φ, f2 =

ψ,A2 = D, f3 = ‖ · ‖1, A3 = W , i.e.,

min
x

λ

2
‖Φx− b‖2

2 + µ‖x‖TV + ‖Wx‖1. (M5)

(ii) Applications in machine learning

Various optimization problems arising from machine learning seek to minimize a loss
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function possibly along with a regularization term. The loss function describes the

expected cost, and the most frequently used regularization term is the `1 regularization

term that enforces sparsity on the desired solution in order to avoid over-fitting [78].

• The `1-regularized Linear Least Squares Problem: This problem is known as

Basis Pursuit [9, 21, 29] in compressive sensing and Least Absolute Shrinkage

and Selection Operator (LASSO) [78] in machine learning and statistics. Ba-

sis pursuit is designed to recover a sparse signal x from compressed measure-

ments. Let Φ be a given sampling matrix, b be observed measurements, and

λ be a model parameter. The model can be written as problem (P0) with

f1 = λ
2
‖ · −b‖2

2, A1 = Φ, f2 = ‖ · ‖1, A2 = I, i.e.,

min
x

λ

2
‖Φx− b‖2

2 + ‖x‖1. (M6)

• The `1-regularized Classification Model [28, 76, 81]: The model is designed for

classifying data by using a linear classifier in machine learning. Suppose w ∈ Rn

is the sparse coefficients of the linear classifier to be computed, b ∈ R is the bias

of the linear classifier, λ > 0 is a model parameter, (xi, yi) ∈ Rn×R are the given

data points, and li : R → R are loss functions, i = 1, 2, . . . , N . The model can

be written as problem (P0) with f1(w) = λ
∑N

i=1 li(yi(w
>xi + b)), A1 = In, f2 =

‖ · ‖1, A2 = In, i.e.,

min
w
λ

N∑
i=1

li(yi(w
>xi + b)) + ‖w‖1.

There are several classification models that can be written in this form with

different choice of the loss function li. For example, support vector machine

(SVM) [28,81] uses the hinge loss function and logistic regression optimization [76]

uses the logistic loss function.

• Consensus Optimization [48,64,83]: The model is designed to minimize the total
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cost in a network with N agents. Suppose x is the solution to be computed, and

fi is the cost function of the i-th agent, i = 1, 2, . . . , N . The model can be written

as problem (P0) with Ai = I, i.e.,

min
x

N∑
i=1

fi(x).

All the optimization problems mentioned above can be solved by the algorithms developed

under the implicit fixed-point proximity framework that we will propose in this dissertation.

Depending on the number of convex functions and the number of composite linear operators,

the applicable algorithms are different. We will illustrate in detail the fixed-point proximity

framework with an emphasis on implicit algorithms in Chapter 2.

1.2 Literature Review

The fixed-point proximity framework for composite optimization problems has been ex-

tensively studied in recent years due to its ease of applicability. The framework relies on the

notion of proximity operator, which was introduced early in [62, 73] and widely adopted to

applications arising from image processing (see, e.g., [4, 5, 27]). Under the fixed-point prox-

imity framework, the solutions of the optimization problem are characterized as fixed points

of a mapping defined in terms of proximity operator, thereby allowing for the development

of efficient numerical methods via various powerful fixed point iterations.

The first algorithm, developed from the perspective of both proximity operator and fixed

point theory, was the fixed point problem algorithm based on proximity operator (FP2O)

[60] designed to solve the ROF model (M1) for image denoising. Accordingly, this fixed-

piont proximity approach has been extended to handle the L1-TV model (M2) for image

denoising [17, 50, 61], the basis pursuit model (M6) for compressive sensing [15], the TV-

regularized MAP ECT reconstruction model for ECT image reconstruction [49], the exp-

model for removing multiplicative noise [56,57], and other models [53].
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Various algorithms have been proposed since then by employing the fixed-point proximity

framework along with other techniques in convex analysis and numerical analysis. For exam-

ple, the multi-step fixed-point proximity algorithm [51,52] introduced the multi-step scheme

into the framework; the primal–dual fixed point algorithm based on proximity operator

(PDFP2O) [18–20] combined the framework with the primal dual formulation [11,69,82]; the

fixed-point proximity Gauss-Seidel algorithm (FPGS) [16] utilized the Gauss-Seidel method

and a parameters relaxation technique in addition to the framework.

The fixed-point proximity framework has been demonstrated in the literature to be a

powerful tool for composite optimization problems [51]. On one hand, the framework pro-

vides a general platform to explore new algorithms for different optimization problems. On

the other hand, the framework offers new insights on existing algorithms and puts forward

new improvements.

Many existing algorithms can be identified as a fixed-point proximity algorithm and

be reinterpreted under the framework, even though they are developed from different per-

spectives. We classify these algorithms roughly into two categories. The first category of

algorithms are developed from the Fenchel-Rockafellar duality theory [25, 72] and have the

primal dual formulation [69, 82]. The primal dual method formulates a primal problem and

a dual problem, and then updates the primal variable and dual variable alternatively. For

example, first order primal dual algorithm (PD) [11, 69, 82], primal-dual hybrid gradient

algorithm (PDHG) [33, 87], and contraction-type primal dual algorithm [43] are considered

as fixed-point proximity algorithms in the first category. The second category of algorithms

are developed from the augmented Lagrangian technique [37,44,70,71]. The augmented La-

grangian method minimizes the augmented Lagrangian function of the equality-constrained

optimization problem, and then updates the Lagrange multipliers. For example, augmented

Lagrangian method (ALM) [35–37, 44, 70, 71], alternating direction method of multipliers

(ADMM) [3, 31, 36], and alternating minimization algorithm (AMA) [80] are considered as

fixed-point proximity algorithms in the second category. Some algorithms based on splitting
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techniques are shown to be closely related to the algorithms in the second category, including

Douglas-Rachford splitting algorithm (DRSA) [26, 31], alternating split Bregman iteration

(ASBI) [39], and Bregman operator splitting algorithm (BOS) [86].

1.3 Motivations

Among the algorithms for solving composite optimization problems, various algorithms

can be reformulated as fixed-point proximity algorithms and further analyzed under the

fixed-point proximity framework. Under this framework, the optimization problems are

converted into fixed point problems in relation to proximity operators, and then be solved

through iterative schemes. The existing fixed-point proximity algorithms all have an explicit

iterative scheme so that the algorithms can be computed efficiently. However, we observe that

there are some restrictions of those algorithms due to the explicitness. We are motivated

to develop fixed-point proximity algorithms with a fully implicit scheme, because of the

following restrictions of existing explicit fixed-point proximity algorithms.

First, the convergence assumptions of explicit fixed-point proximity algorithms may be

relatively strict. For example, the primal dual algorithm (PD) has a relatively restricted

selection range for the parameters of the proximity operators, which significantly influences

the performance of the algorithm. That is due to the limitations of its underlying algorithm

structure which is formed to maintain the explicit expression of the algorithm.

Second, the explicit fixed-point proximity algorithms may only be applicable to limited

types of composite optimization problems. For example, the fixed point problem algorithm

based on proximity operator (FP2O) and the alternating split Bregman iteration (ASBI)

are designed to solve problems with quadratic functions. Additional numerical methods

are employed to achieve the explicitness of those algorithms. But those numerical methods

require additional assumptions not only on the parameters of the proximity operators but

also on the objective function, which restricts the applicable range of the algorithms.
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Therefore, we aim to study fixed-point proximity algorithms with a fully implicit scheme,

because the implicit schemes allow more flexibility while building the structures of the al-

gorithms, and have a potential to yield an algorithm that outperforms existing explicit

algorithms.

1.4 Contributions of This Dissertation

In this dissertation, we establish an implicit fixed-point proximity framework that serves

as a guideline for developing implicit iterative algorithms applied to composite optimization

problems. We also propose several implicit algorithms under the framework with algorithm

structures that are not observed in existing fixed-point proximity algorithms.

The two main contributions of this dissertation are summarized as follows.

• The first one is that we enrich the existing fixed-point proximity framework by an-

alyzing fixed-point proximity algorithms with a fully implicit scheme. The existing

framework is designed for developing algorithms with an explicit expression and is not

applicable for developing algorithms with a fully implicit expression. Our proposed

framework employs fixed point techniques, including contractive mappings, to address

the issues that may occur while developing implicit algorithms. Theoretical results are

provided to guarantee the convergence of implicit algorithms.

• The second one is that we propose two algorithm structures and develop several implicit

fixed-point proximity algorithms for different composite optimization problems. We

are not aware of any existing fixed-point proximity algorithms that possessed the pro-

posed algorithm structures. And numerical experiments demonstrate that the implicit

algorithms with the proposed algorithm structures outperform the existing fixed-point

proximity algorithms in terms of computational time.



9

1.5 Organization of This Dissertation

This dissertation is organized in the following manner. In Chapter 2, we present the

implicit fixed-point proximity framework. We start from fixed-point proximity equations

that characterize the solutions of a composite optimization problem, and then build implicit

algorithms via contractive mappings with comprehensive theoretical convergence results. In

Chapter 3, we propose several implicit algorithms for different optimization problems under

the implicit fixed-point proximity framework. For each implicit algorithm, we conduct a

convergence analysis with theoretical results. In Chapter 4, we test the proposed implicit

proximity algorithms on several image reconstruction models and demonstrate the practi-

cal performance of the proposed implicit algorithms over other existing explicit fixed-point

proximity algorithms. Finally, some conclusions and future work are presented in Chapter

5.



Chapter 2

Implicit Fixed-point Proximity

Framework

In this chapter, we first review the existing fixed-point proximity framework for devel-

oping explicit algorithms applied to composite optimization problems, and then propose a

framework for developing fixed-point proximity algorithms with fully implicit schemes.

In order to formulate the fixed-point proximity framework in a general setting, we consider

the optimization problem in the following general form

min
x∈Rn

f(Ax), (P1)

where A is an m × n matrix, and f : Rm → (−∞,+∞] is proper, lower semi-continuous,

and convex. By defining

A =



A1

A2

...

AN


, y =



y1

y2

...

yN


,

and f(y) =
∑N

i=1 fi(yi), problem (P0) can be written as problem (P1).

The rest of this chapter is organized in the following manner. In Section 2.1, we present

10
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notations and recall some preliminary results in convex analysis and fixed point theory.

Before illustrating the proposed implicit fixed-point proximity framework for problem (P1),

we formulate in Section 2.2 fixed-point proximity equations that characterize the solutions of

problem (P1), and then present a summary of the existing fixed-point proximity framework

in Section 2.3 and a review of one class of existing fixed-point proximity algorithms in Section

2.4. Lastly, we present our main result in Section 2.5. We establish the implicit fixed-point

proximity framework, which serves as a guideline for developing implicit algorithms.

2.1 Notations and Preliminaries

Let us introduce some notations and recall some preliminary results in convex analysis

and fixed point theory.

For given x, y ∈ Rd, 〈x, y〉 :=
∑d

i=1〈xi, yi〉 is the standard inner product and ‖x‖2 :=√
〈x, x〉 is the standard `2 norm. Let Sd+ (resp. Sd) denote the set of symmetric positive

definite (resp. semi-definite) matrices of size d×d and let Id denote the identity matrix of size

d× d. For given x, y ∈ Rd and a given H ∈ Sd+, 〈x, y〉H := 〈x,Hy〉 is the H-weighted inner

product and ‖x‖H :=
√
〈x, x〉H is the H-weighted `2 norm. If H is the identity matrix, then

the H-weighted inner product reduces to the standard inner product, and the H-weighted

`2 norm reduces to the standard `2 norm.

Let f : Rd → (−∞,+∞]. The domain of f is a set in Rd defined as dom f := {x ∈

Rd : f(x) < +∞}. The function f is proper if dom f 6= ∅. The function f is lower semi-

continuous at a ∈ Rd, if f(a) ≤ limx→a f(x). The function f is convex if f(λx+ (1− λ)y) ≤

λf(x) + (1 − λ)f(y), for all x, y ∈ dom f , and all λ ∈ (0, 1). The class of proper, lower

semi-continuous, and convex functions from Rd to (−∞,+∞] is denoted as Γ0(Rd).
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2.1.1 Preliminaries in convex analysis

Let us present some preliminaries in convex analysis, which will be used in this disserta-

tion.

First, we recall the definitions of several important concepts in convex analysis, including

the subdifferential, conjugate, and proximity operator of a convex function.

For f ∈ Γ0(Rd), the subdifferential of f at x ∈ Rd is a set in Rd defined as

∂f(x) :=
{
y ∈ Rd : f(u) ≥ f(x) + 〈y, u− x〉 for ∀u ∈ Rd

}
. (2.1)

The elements of ∂f(x) are called the subgradients of f at x. Furthermore, ∂f(x) is a

nonempty compact set for all x ∈ dom f . In particular, if f is differentiable, then ∂f(x) =

{∇f(x)}.

The conjugate of f is a mapping from Rd to (−∞,+∞] defined as

f ∗(y) := sup
x∈Rd
{〈x, y〉 − f(x)} .

If f ∈ Γ0(Rd), then the conjugate f ∗ ∈ Γ0(Rd) and ∂f ∗(y) is a nonempty compact set for

all y ∈ dom f ∗. The subdifferentials of f and f ∗ have the following relationship

y ∈ ∂f(x) if and only if x ∈ ∂f ∗(y). (2.2)

The proximity operator of f with respect to H ∈ Sd+ is a mapping from Rd to Rd defined

as

proxf,H(u) := argmin
x∈Rd

{
f(x) +

1

2
‖x− u‖2

H

}
.

In particular, if H = 1
α
Id, α > 0, then proxf,H(u) reduces to the proximity operator with

parameter α with respect to the standard `2 norm, denoted as proxαf (u).

The proximity operator of f with respect toH ∈ Sd+ is closely related to the subdifferential



13

of f . The equation x = proxf,H(u) holds if and only if x is the unique solution of the following

implicit problem 
x = u−H−1y

y ∈ ∂f(x).

(2.3)

The result above can be reinterpreted as follows by redefining the variable y in (2.3) as H−1y,

Hy ∈ ∂f(x) if and only if x = proxf,H(x+ y). (2.4)

The relationship between the proximity operators of f and its conjugate f ∗ is given by

Moreau’s identity

x = proxf∗,H(x) +H−1proxf,H−1 (Hx) . (2.5)

If f : Rd → (−∞,+∞] can be written as f(x) =
∑N

i=1 fi(xi), where fi : Rdi →

(−∞,+∞], xi ∈ Rdi , i = 1, . . . , N , d =
∑N

i=1 di and

x =



x1

x2

...

xN


,

then f is a block separable sum of fi’s, i = 1, 2, . . . , N . The ith block of the proximity

operator of f is evaluated by the proximity operator of the ith separable part, that is,

(
proxf (x)

)
i

= proxfi(xi),

for i = 1, 2, . . . , N .

Second, we present two examples for which we can explicitly compute their subdifferen-

tials, conjugates and proximity operators.
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Example 1: (Quadratic Function) We have ∂(1
2
‖ · ‖2

2)(x) = {x},
(

1
2
‖ · ‖2

2

)∗
= 1

2
‖ · ‖2

2,

and proxα
2
‖·‖22(x) = 1

α+1
x.

Example 2: (The `2 Norm) Let B̄(x, r) := {y ∈ Rd : ‖x− y‖2 ≤ r} denote a closed ball

center at x ∈ Rd with radius r > 0. Then

∂(‖ · ‖2)(x) =


{

x
‖x‖2

}
, if x 6= 0;

B̄(0, 1), if x = 0,

(‖ · ‖2)∗(x) = ιB̄(0,1)(x) =


0, if x ∈ B̄(0, 1);

+∞, otherwise,

where ιB̄(0,1) is the indicator function of B̄(0, 1), and

proxα‖·‖2(x) = max(‖x‖2 − α, 0)
x

‖x‖2

.

Third, we start with some definitions and then present two important theorems for finding

minimizers of a composite optimization problem.

The affine hull of a set S ⊆ Rd is a set in Rd defined as

aff (S) :=

{
k∑
i=1

αixi ∈ Rd : k > 0, xi ∈ S, αi ∈ R,
k∑
i=1

αi = 1

}
.

The relative interior of a set S ⊆ Rd is a set in Rd of all interior points of S relative to aff (S)

defined as

ri (S) := {x ∈ S : ∃ε > 0, B(x, ε) ∩ aff (S) ⊆ S},

where B(x, ε) := {y ∈ Rd : ‖x − y‖2 < ε} is an open ball centered at x ∈ Rd with radius

ε > 0.

Now we are ready to present the chain rule for the subdifferential and the Fermat’s rule,
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which will be utilized to characterize the solutions of problem (P1).

The chain rule for the subdifferential of a convex function f : Rm → (−∞,+∞] composed

with a linear operator A ∈ Rm×n is stated as follows: If f ∈ Γ0(Rm) and Range (A) ∩

ri (dom f) 6= ∅, then

∂(f ◦ A)(x) = A>∂f(Ax),

for all x ∈ Rn.

Fermat’s rule characterizes the global minimizers of a proper function f : Rd → (−∞,+∞]

in terms of the subdifferential of f as follows

argmin f =
{
x ∈ Rd : 0 ∈ ∂f(x)

}
.

2.1.2 Preliminaries in fixed point theory

Let us recall some definitions and helpful theorems in fixed point theory for develop-

ing iterative algorithms, including Krasnosel’skǐı–Mann algorithm that will be used in this

dissertation.

Definition 2.1 The set of fixed points of an operator T : Rd → Rd is defined as

Fix T := {x ∈ Rd : x = Tx}.

Definition 2.2 An operator T : Rd → Rd is

(i) firmly nonexpansive with respect to H ∈ Sd+ if for all x, y ∈ Rd

‖Tx− Ty‖2
H ≤ 〈Tx− Ty, x− y〉H ;



16

(ii) nonexpansive with respect to H ∈ Sd+ if for all x, y ∈ Rd

‖Tx− Ty‖H ≤ ‖x− y‖H ;

(iii) α-averaged with respect to H ∈ Sd+, where α ∈ (0, 1), if there exists a nonexpansive

operator R : Rd → Rd with respect to H ∈ Sd+ such that T = (1− α)Id + αR.

Lemma 2.3 [25] Let f ∈ Γ0(Rd) and H ∈ Sd+. Then proxf,H is firmly nonexpansive with

respect to H. If H = 1
α
Id, where α > 0, then proxf,H = proxαf is firmly nonexpansive with

respect to the standard `2 norm.

Lemma 2.4 [25] Let T : Rd → Rd and H ∈ Sd+. Then

(i) T is firmly nonexpansive with respect to H if and only if for all x, y ∈ Rd

‖Tx− Ty‖2
H ≤ ‖x− y‖2

H − ‖(Id− T )x− (Id− T )y‖2
H ;

(ii) T is α-averaged with respect to H, α ∈ (0, 1), if and only if for all x, y ∈ Rd

‖Tx− Ty‖2
H ≤ ‖x− y‖2

H −
1− α
α
‖(Id− T )x− (Id− T )y‖2

H ;

(iii) T is firmly nonexpansive with respect to H if and only if T is 1
2
-averaged with respect

to H.

It is clear that a firmly nonexpansive operator is 1
2
-averaged, and an α-averaged operator

is nonexpansive. The nonexpansiveness of an operator T is sufficient to develop an iterative

algorithm which generates a sequence converging to a point in Fix T , as demonstrated in

the following theorem on Krasnosel’skǐı–Mann algorithm.
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Theorem 2.5 (Krasnosel’skǐı–Mann Algorithm) Let T : Rd → Rd be a nonexpansive

operator with respect to H ∈ Sd+. Suppose that Fix T 6= ∅. Let {λk} be a sequence in [0, 1]

such that
∑

k λk(1 − λk) = +∞. Then, for any initial vector x0 ∈ Rd, the sequence {xk}

generated by

xk+1 = xk + λk
(
Txk − xk

)
converges to a point in Fix T .

Proof. The result follows from Theorem 5.14 in [25].

2.2 Fixed Point Characterization

With the preliminaries on convex analysis and fixed point theory in Section 2.1, we are

ready to characterize the solutions of the optimization problem (P1) as the solutions of a

system of fixed point equations in terms of proximity operators.

According to Fermat’s rule, a vector x ∈ Rn is a solution of problem (P1) if and only if

the following inclusion relation holds

0 ∈ ∂(f ◦ A)(x). (2.6)

By applying equation (2.4) to the inclusion relation (2.6), the solution x of problem (P1)

can be characterized as a fixed point of the proximity operator of f ◦A with respect to any

P ∈ Sn+, that is,

x = proxf◦A,P (x). (2.7)

However, it is rare to have an explicit expression of the proximity operator proxf◦A,P for

the optimization problems arising from image processing. Hence, it becomes necessary to

exploit the composition nature of problem (P1) and to take advantage of the function f if
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its proximity operator has a closed formula or is easy to evaluate.

Next, we apply the subdifferential chain rule to the composite function f ◦A, and obtain

that the subdifferential of f ◦ A evaluated at a point x is A>∂f(Ax). Then it follows from

equations (2.3) that the fixed point equation (2.7) is equivalent to the following system


x = x− P−1A>y

y ∈ ∂f(Ax).

(2.8)

Note that the second equation in equations (2.8) can be converted into a fixed point equation

in terms of the proximity operator of f ∗ by using equation (2.2) and (2.4). Furthermore, the

solutions of problem (P1) can be characterized as the solutions of a system of fixed point

equations presented in the following proposition.

Proposition 2.6 Suppose that the set of solutions of problem (P1) is nonempty. If a

vector x ∈ Rn is a solution of problem (P1), then, for any P ∈ Sn+ and Q ∈ Sm+ , there exists

a vector y ∈ Rm such that the following system of equations holds


x = x− P−1A>y

y = proxf∗,Q(y +Q−1Ax).

(2.9)

Conversely, if there exist P ∈ Sn+ and Q ∈ Sm+ , x ∈ Rn, and y ∈ Rm satisfying the system of

equations (2.9), then x is a solution of problem (P1).

Proof. It follows from Fermat’s rule and the subdifferential chain rule that x ∈ Rn is a

solution of problem (P1) if and only if there exists y ∈ Rm such that y ∈ ∂f(Ax) and

A>y = 0.

Suppose x ∈ Rn is a solution of problem (P1). Let P ∈ Sn+ and Q ∈ Sm+ . It follows

from equation (2.2) that Q(Q−1Ax) ∈ ∂f ∗(y). Thus, we deduce from equation (2.4) that the

system of equations (2.9) holds.
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Conversely, suppose that there exist P ∈ Sn+ and Q ∈ Sm+ , x ∈ Rn, and y ∈ Rm satisfying

the system of equations (2.9). Then A>y = 0. Also, it follows from equation (2.2) and

equation (2.4) that y ∈ ∂f(Ax). Thus, x is a solution of problem (P1).

Proposition 2.6 demonstrates that solving problem (P1) is equivalent to solving the sys-

tem of fixed point equations (2.9). In fact, the system of equations (2.9) is not the unique

system of fixed point equations that can characterize the solutions. Other variants of equa-

tions (2.9) can also be used to characterize the solutions as long as the solutions of fixed

point equations (2.9) remain unchanged.

We present two variants of the fixed point equations (2.9). The first variant is gener-

ated by substituting one of the fixed point equations into the other equations. The second

variant is generated by applying Moreau’s identity (2.5) to rewrite the proximity operator if

additional information on the objective function is provided.

Example 1: The first equation in equations (2.9) is a fixed point equation with respect

to x, so we can replace the variable x in the second equation by the first equation with a

parameter P̃−1 different from P−1. The new system of fixed point equations is shown as

follows 
x = x− P−1A>y

y = proxf∗,Q(y +Q−1A(x− P̃−1A>y)).

(2.10)

Example 2: Suppose that A = In. It follows from the first equation in equations (2.9)

that the variable y = 0 and that y can be eliminated from the system. Then the first fixed

point equation of x can be rewritten in terms of the proximity operator of f instead of f ∗, by

substituting the second equation into the variable y in the first equation, choosing P = Q−1,

and then applying the Moreau’s identity (2.5). The new system of fixed point equations is

shown as follows

x = proxf,Q−1(x). (2.11)
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All the fixed point equations mentioned above, including equations (2.9), (2.10) and

(2.11), can be written as the following unified and compact fixed point equation

w = proxF,R(Ew), (2.12)

where w ∈ Rd, F : Rd → (−∞,+∞], R ∈ Sd+ and E ∈ Rd×d.

Equations (2.9) can be written as the unified fixed point equation (2.12) with F : Rn+m →

(−∞,+∞] defined by F (w) = f ∗(y), R = diag (P,Q) ∈ Sn+m
+ ,

w =

x
y

 ∈ Rn+m and E =

 In −P−1A>

Q−1A Im

 ∈ R(n+m)×(n+m).

Equations (2.10) can be written as equation (2.12) with the same w, F , andR as equations

(2.9), but with a different matrix E defined as follows

E =

 In −P−1A>

Q−1A Im −Q−1AP̃−1A>

 ∈ R(n+m)×(n+m). (2.13)

Equations (2.11) can be written as equation (2.12) with w = x ∈ Rn, F : Rn →

(−∞,+∞] defined by F (x) = f(x), R = Q−1 ∈ Sn+ and E = In.

The unified fixed point equation (2.12) plays a fundamental role in the fixed-point prox-

imity framework. It can represent a variety of fixed point equations that characterize the

solutions of problem (P1), and allows us to formulate the fixed-point proximity framework

in a general setting.

2.3 Fixed-point Proximity Framework

In this section, we present a general framework for developing algorithms to solve problem

(P1). The framework is established based on the unified fixed point equation (2.12) in terms



21

of proximity operators, so we call this framework a fixed-point proximity framework. We

start with equation (2.12) and then reformulate this equation to another equivalent fixed

point equation, in order to develop convergent iterative algorithms.

The unified fixed point equation (2.12), which characterizes the solutions of problem (P1),

is a fixed point equation of the composite operator proxF,R ◦ E. The proximity operator

proxF,R is always firmly nonexpansive with respect to R. However, ‖E‖2 in most of the

scenarios is strictly great than 1 (see, e.g., [16, 51]). The composite operator proxF,R ◦ E

may not be nonexpansive, and the simple iterative algorithm wk+1 = proxF,R(Ewk) may not

converge. Thus, the operator proxF,R ◦ E has to be reformulated into another operator in

order to generate a convergent algorithm.

In the fixed-point proximity framework, we split up the matrix E in equation (2.12) into

two matrices M and E −M and then study the following implicit iterative algorithm

wk+1 = proxF,R(Mwk+1 + (E −M)wk), (2.14)

where M is a matrix to be determined later.

In order to have a better understanding of the implicit iterative algorithm (2.14), we

introduce a new operator LM induced from the implicit iterative scheme (2.14).

Definition 2.7 Let M be a d× d matrix. If for any vector u ∈ Rd the following equation

v = proxF,R(Mv + (E −M)u) (2.15)

has a unique solution v ∈ Rd, then LM : Rd → Rd : u 7→ v, induced from equation (2.15), is

called an M -operator associated with the operator proxF,R ◦ E.

Depending on the choice of the matrix M , the solution of the implicit equation (2.15)

may not exist in general. If it exists, it may not be unique. If we impose the existence and

uniqueness on the solution of the implicit equation (2.15) for any given vector u, then the
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resulting operator LM is well-defined and the fixed point equation (2.12) can be reformulated

in terms of the new operator LM as follows

w = LM(w). (2.16)

This new fixed point equation preserves the characterization of the solutions of problem

(P1), because LM and proxF,R ◦ E have the same fixed points.

Proposition 2.8 Suppose LM is an M -operator associated with the operator proxF,R ◦E.

Then the fixed points of proxF,R ◦ E are the same as the fixed points of LM , i.e.,

Fix (proxF,R ◦ E) = Fix (LM).

Proof. Let w ∈ Rd. According to Definition 2.7, w = LM(w) if and only if

w = proxF,R(Mw + (E −M)w) = proxF,R(Ew).

Thus, the result immediately follows.

As the optimization problem (P1) has been transformed to the fixed point problem (2.16),

the powerful tools in fixed point theory mentioned in Section 2.1.2 can be applied to develop

iterative algorithms for solving problem (P1). In particular, the result in Theorem 2.5

suggests that an algorithm with a Krasnosel’skǐı–Mann iterative scheme can efficiently find

the fixed points of LM , which are also the solutions of problem (P1). The sequence {wk}

generated by the algorithm is set as follows

wk+1 = wk + λk(LM(wk)− wk), (2.17)
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where λk > 0 and LM(wk) is the unique solution of the following implicit equation

w = proxF,R(Mw + (E −M)wk). (2.18)

We call the algorithm with the above iterative scheme as a Fixed-point Proximity

Algorithm, since it is developed based on fixed point equations in terms of proximity

operators. In this algorithm, the operator LM is associated with the choice of the matrix M

and has a great impact on the overall performance of the algorithm.

To ensure that the sequence generated by the fixed-point proximity algorithm (2.17)

converges to a solution of problem (P1), the operator LM should satisfy the following three

properties.

• Property 1: LM is an M -operator;

• Property 2: LM can be evaluated efficiently;

• Property 3: LM is nonexpansive.

The first property is to guarantee that LM is a well-defined single-valued operator and the

algorithm, therefore, is well-defined. The second property is required for practical purposes.

The computational efficiency of LM at each step influences the computational efficiency

of the algorithm. Thus, we have to make sure that LM can be evaluated to the error

tolerance within an acceptable time period. Otherwise, evaluating the operator LM , which

is induced from an implicit equation, may be as difficult as solving the original fixed point

problem (2.12). The third property is a sufficient condition in Theorem 2.5 that yields the

convergence of the algorithm. These three properties serve as a guideline for developing a

fixed-point proximity algorithm.

In the following sections, we will first present several existing fixed-point proximity algo-

rithms, then use those algorithms as examples to illustrate how Property 1, Property 2 and

Property 3 on LM can yield a convergent fixed-point proximity algorithm.
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2.4 Existing Fixed-point Proximity Algorithms

Many algorithms in the literature for solving problem (P1) can be identified as fixed-point

proximity algorithms, even though they are developed from different perspectives. For exam-

ple, primal dual algorithm (PD), alternating direction method of multipliers (ADMM), alter-

nating split Bregman iteration (ASBI), and Douglas-Rachford splitting algorithm (DRSA)

are fixed-point proximity algorithms, and can be derived from the same fixed-point proximity

framework just with different choices of the matrix M .

Next, we review one class of existing fixed-point proximity algorithms, which are designed

to solve problem (P1) with

A =

In
B

 , w =

x
y

 ∈ Rn+m,

and f : Rn+m → (−∞,+∞] defined by f(w) = f1(x) + f2(y), where f1 : Rn → (−∞,+∞]

and f2 : Rm → (−∞,+∞] are proper, lower semi-continuous and convex, and B is an m×n

matrix. The corresponding optimization problem is shown as follows

min
x∈Rn

f1(x) + f2(Bx). (2.19)

The algorithms to be presented can be identified as fixed-point proximity algorithms with

the same iterative equation as follows. The function F , and matrices E and R, which are

derived from the objective function (2.19), are the same for all the algorithms, while the

matrix M is different across algorithms.

wk+1 = proxF,R(Mwk+1 + (E −M)wk), (2.20)

where F : Rn+m → (−∞,+∞] defined by F (w) = f1(x) + f ∗2 (y), R = diag
(

1
α
In,

1
β
Im

)
,
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α > 0, β > 0,

w =

x
y

 ∈ Rn+m and E =

 In −αB>

βB Im

 .
Note that F is a block separable sum of two convex functions, so w is a vector of two variables,

E, R and M are 2×2 block matrices, and Algorithm (2.20) consists of two iterative equations.

For each of the following fixed-point proximity algorithms, we present its choice of M ,

and then analyze its corresponding operator LM under the fixed-point proximity framework,

regarding Property 1, Property 2, and Property 3 discussed in the previous section.

• Primal Dual Algorithm (PD) [11,82]: This algorithm is developed from the perspective

of the Fenchel-Rockafellar duality theory.


xk+1 = proxαf1(x

k − αB>yk)

yk+1 = proxβf∗2 (2βBxk+1 − βBxk + yk).

(2.21)

It can be identified as a fixed-point proximity algorithm of the form as equation (2.20)

with

M =

 0 0

2βB 0

 . (2.22)

This algorithm converges if αβ‖B‖2
2 < 1.

In PD (2.21), xk+1 can be computed explicitly, then yk+1 can also be computed ex-

plicitly by using the newest update xk+1. Thus, the operator LM associated with the

matrix M defined as (2.22) has an explicit expression and satisfies Property 1 and

Property 2. If the convergence assumption αβ‖B‖2
2 < 1 is satisfied, then LM is firmly

nonexpansive, which implies Property 3.

• Fixed Point Algorithm Based on the Proximity Operator for ROF model (FP2O) [60]:

This algorithm is the first fixed-point proximity algorithm that is developed from the
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perspective of fixed point equations in terms of proximity operators.


xk+1 = proxf1

(
xk+1 −B>yk

)
yk+1 = proxβf∗2

(
βBxk+1 + yk

)
,

(2.23)

where f1 = 1
2
‖ · −z‖2

2.

It can be identified as a fixed-point proximity algorithm of the form as equation (2.20)

with α = 1 and

M =

 I 0

βB 0

 . (2.24)

This algorithm converges if ‖Im − βBB>‖2 < 1.

In FP2O (2.23), xk+1 is the solution of an implicit equation and yk+1 can be computed

explicitly by using the newest update xk+1. FP2O is designed to solve the optimization

problem (2.19) with f1 = 1
2
‖ · −z‖2

2, whose proximity operator is proxf1(x) = 1
2
x+ 1

2
z.

Thus, the first equation has a closed form, that is, xk+1 = z −B>yk. Then the second

equation can further be rewritten as

yk+1 = proxβf∗2

(
βBz + (Im − βBB>)yk

)
,

and yk+1 can be computed explicitly. If the convergence assumption ‖Im−βBB>‖2 ≤ 1

is satisfied, then the operator LM associated with the matrix M defined as (2.24) has

an explicit expression and satisfies Property 1, Property 2, and Property 3.

• Alternating Split Bregman Iteration (ASBI) [39] : This algorithm is developed from

the perspective of Bregman splitting. ASBI is equivalent to ADMM [32], while ADMM
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is closely related to Douglas-Rachford splitting algorithm (DRSA) [30,35,55].


xk+1 = proxf1

(
(In − βB>B)xk+1 − 2B>yk+1 + βB>Bxk +B>yk

)
yk+1 = proxβf∗2

(
βBxk + yk

)
,

(2.25)

where f1 = 1
2
‖ · −z‖2

2.

It can be identified as a fixed-point proximity algorithm of the form as equation (2.20)

with α = 1 and

M =

In − βB>B −2B>

0 0

 . (2.26)

The sequence {yk} converges for any β > 0, but the sequence {xk} may not converge,

see [51].

In ASBI (2.25), yk+1 can be computed explicitly, but xk+1 has to be computed from an

implicit equation even after substituting the newest update yk+1. It is mentioned in [39]

that this implicit step is evaluated by using Gauss-Seidel method if f1 = 1
2
‖ · −z‖2

2.

Thus, the operator LM associated with the matrix M defined as (2.26) has an implicit

expression but can be solved explicitly. The operator LM satisfies Property 1 and

Property 2. However, the convergence assumption β > 0 cannot guarantee that LM is

firmly nonexpansive if B>B is not a full-rank matrix [51]. Hence, Property 3 may not

be achieved for ASBI.

From the review of existing fixed-point proximity algorithms, we notice that the block

structure of M is crucial to the operator LM , and observe two types of block structures

of M . In the first type, M is a strictly block lower or upper triangular matrix, which is

observed in PD (2.21). In this case, LM(wk) has a closed form, so the algorithm has an

explicit expression and can be computed accurately. In the second type, M has a matrix

structure with at least one nonzero diagonal block, which is observed in FP2O (2.23) and

ASBI (2.25). In this case, LM(wk) has an implicit expression but can be computed explicitly
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provided that additional constraints on the objective function are satisfied.

(i) Strictly block lower or upper triangular matrix structure

Two examples of strictly block lower or upper triangular matrix structures on the

matrix M are presented as follows

M =


×

 or

×
× ×

 .

If the matrix M has a strictly triangular block structure, then its corresponding op-

erator LM automatically satisfies Property 1 and Property 2. Because at least one of

the variable components can be computed explicitly, and then it can be utilized to

compute other variable components, which results in an explicit operator LM .

In PD (2.21), the block structure of M defined as (2.22) can be identified as the

first case above; in the proximity algorithm with the Gauss-Seidel scheme (3.13) [16]

that will be discussed in Chapter 3, the block structure of M defined as (3.14) can be

identified as the second case above. However, from the perspective of algorithm design,

only a limited number of algorithms can have such structure of M . Also, in order to

maintain such strictly triangular block structure of M , the convergence assumption

may be strict.

(ii) Matrix structure with at least one nonzero diagonal block

Two examples of matrix structures with at least one nonzero diagonal block on the

matrix M are presented as follows

M =

×
×

 or

× ×
 .
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In FP2O (2.23), the block structure of M defined as (2.24) can be identified as the first

case; in ASBI (2.25), the block structure of M defined as (2.26) can be identified as

the second case.

If the matrixM has at least one nonzero diagonal block, then its corresponding operator

LM has an implicit expression. The operator LM can still be computed explicitly and

satisfy Property 1 and Property 2, if the diagonal blocks are well selected and the

proximity operator of F has a simple form. For example, in both ASBI and FP2O, the

optimization problem contains a quadratic function. Then solving the corresponding

implicit equation is equivalent to solving a system of linear equations, which can be

efficiently computed. However, if the proximity operator of F does not have a simple

form, then those algorithms may fail to work.

All in all, the algorithms mentioned above can be computed explicitly and their corre-

sponding operators LM satisfy Property 1 and Property 2. However, there are some issues

with existing fixed-point proximity algorithms. For instance, some algorithms have relatively

strict convergence assumptions due to the block structure of M , while others are applicable

only to certain types of optimization problems.

Therefore, the issues occurred in existing fixed-point proximity algorithms mentioned

above motivate us to study implicit fixed-point proximity algorithms whose LM has a fully

implicit expression. Such algorithms can solve a wide range of optimization problems, have

reasonable convergence assumptions, and, more importantly, converge to the solution faster

than existing fixed-point proximity algorithms.

2.5 Implicit Fixed-point Proximity Framework

In this section, we aim to develop fixed-point proximity algorithms with fully implicit

schemes and establish the implicit fixed-point proximity framework for those implicit algo-

rithms. The study on the implicit fixed-point proximity framework is the main contribution
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of this dissertation and will be illustrated in detail with sufficient theoretical results.

Recall that fixed-point proximity algorithms share a common iterative scheme (2.17),

but differ in LM induced from the implicit equation (2.18). Depending on the choice of the

matrix M , LM may be evaluated explicitly or implicitly.

In the existing fixed-point proximity algorithms, LM(wk) is computed explicitly either

directly from a closed form or by some numerical methods. In order to maintain the explicit

expression, those existing algorithms suffer from some issues. For example, primal dual

algorithm (2.21) has to assume a relatively strict convergence condition and ASBI (2.25) can

only solve certain types of optimization problems.

Therefore, we focus on the case when LM has a fully implicit expression and LM(wk) is

computed implicitly. Because the implicit schemes allow more flexibility while building the

structures of the algorithms, and have a potential to yield an algorithm that outperforms

existing explicit algorithms in terms of computational time.

Note that we refer the case when LM has a fully implicit expression to the case when LM

has an implicit expression and is not evaluated explicitly. This case should be distinguished

from the case when LM is written in an implicit expression but can be evaluated explicitly.

In the following, we will establish a novel framework for developing algorithms with fully

implicit schemes. To the best of our knowledge, the implicit fixed point proximity framework

to be presented is the first framework to address the operator LM with a fully implicit

expression. And the existing fixed-point proximity framework is designed for developing

explicit algorithms and does not address the issues that may occur in implicit algorithms.

2.5.1 Preliminaries on contractive mappings

In order to tackle the issues that we may face while developing implicit algorithms, we

employ some powerful tools in fixed point theory. They are contractive mappings and Banach

fixed point theorem.
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Definition 2.9 A mapping T : Rd → Rd is contractive with respect to H ∈ Sd+ if there

exists a contraction constant q ∈ [0, 1) such that for all x, y ∈ Rd

‖Tx− Ty‖H ≤ q‖x− y‖H .

It is guaranteed by Banach fixed point theorem that the fixed point of a contractive

mapping exists and is unique. Furthermore, this unique fixed point can be achieved via a

simple iterative scheme.

Theorem 2.10 (Banach Fixed Point Theorem) [1] Suppose that T : Rd → Rd is

contractive with respect to H ∈ Sd+. Then T has a unique fixed point x∗ in Rd, i.e., x∗ = Tx∗.

Furthermore, for any initial vector x0 ∈ Rd, the sequence {xk} generated by

xk+1 = Txk

converges to the unique fixed point x∗.

Now, we are ready to develop an implicit fixed-point proximity algorithm by constructing

contractive mappings to evaluate the operator LM with a fully implicit expression.

2.5.2 Implicit fixed-point proximity algorithm

Under the general fixed-point proximity framework, a fixed-point proximity algorithm

has the iterative scheme as equation (2.17). For the operator LM not having an explicit

expression, LM(wk) is computed iteratively by solving the implicit equation (2.18), that is,

w = proxF,R(Mw + (E −M)wk). (2.18)

The proposed Implicit Fixed-Point Proximity Algorithm is presented in Algorithm

1.
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Algorithm 1 Implicit Fixed-point Proximity Algorithm for problem (P1)

1: Choose w0 ∈ Rd, λk ∈ [0, 1]

2: for k from 1 to K do

3: Compute LM(wk) via the inner loop:

4: Set l = 0, choose wk+1
0 ∈ Rd

5: repeat

6: wk+1
l+1 = proxF,R(Mwk+1

l + (E −M)wk) . Inner step

7: l← l + 1

8: until stopping criterion is satisfied

9: LM(wk) = wk+1
∞ . wk+1

∞ is the output from the inner loop

10: wk+1 = wk + λk(LM(wk)− wk)

11: end for

No matter whether LM has an explicit expression or an implicit expression, LM should

satisfy the following three properties, in order to ensure that the corresponding fixed-point

proximity algorithm converges.

• Property 1: LM is an M -operator;

• Property 2: LM can be evaluated efficiently;

• Property 3: LM is nonexpansive.

Therefore, Algorithm 1 needs to satisfy the following assumptions so that its correspond-

ing LM with a fully implicit expression satisfies Property 1, Property 2, and Property 3.

Assumption (A1.1) ‖M‖R < 1;

Assumption (A1.2) R(E − I) is skew-symmetric;
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Assumption (A1.3) R(E −M) ∈ Sd+.

In the following subsections, we demonstrate that the operator LM of Algorithm 1 sat-

isfies Property 1, Property 2, and Property 3, if these three assumptions are satisfied. In

particular, Assumption (A1.1) implies that the operator LM satisfies Property 1 and Prop-

erty 2. Assumption (A1.2) and (A1.3) guarantee that LM satisfies Property 3. Besides

discussing the three properties on LM , we also conduct a convergence analysis on Algorithm

1 by taking the errors from inner iterations into consideration.

2.5.3 Property 1: LM is an M-operator

Property 1 can ensure that the operator LM of Algorithm 1 is well-defined and further

guarantee that Algorithm 1 is also well-defined. Thus, it is essential to include Property 1

in the assumptions of Algorithm 1.

The operator LM of Algorithm 1 has a fully implicit expression, and LM evaluated

at wk, denoted as LM(wk), is induced from the implicit equation (2.18). By Definition

2.7, LM being an M -operator associated with proxF,R ◦ E indicates that, for any vector

wk, the solution of the implicit equation (2.18) exists and is unique. To demonstrate that

Assumption (A1.1) implies Property 1 on the operator LM of Algorithm 1, we need to have

a better understanding of the implicit equation (2.18).

First, we recognize the implicit equation (2.18) for a given vector wk as the fixed point

equation w = T (w), where T : Rd → Rd is defined as

T (w) := proxF,R(Mw + (E −M)wk). (2.27)

Thus, LM is an M -operator associated with proxF,R ◦E if and only if for any vector wk the

fixed point of T exists and is unique.

Second, we show that Assumption (A1.1) ‖M‖R < 1 implies the existence and uniqueness

of the fixed point of T , and that therefore Property 1 is achieved.
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According to Banach fixed point theorem in Theorem 2.10, if T is a contractive mapping,

then the fixed point of T exists and is unique. And there exists a feasible iterative method

to achieve the fixed point.

Algorithm 1 exactly follows this idea. The assumption ‖M‖R < 1 ensures that T is

a contractive mapping, and further guarantees Property 1. Also, to solve the fixed point

problem of T , Algorithm 1 conducts inner iterations and generates an inner sequence {wk+1
l }l

by the 6th line in Algorithm 1, i.e.,

wk+1
l+1 = proxF,R(Mwk+1

l + (E −M)wk). (2.28)

This inner step can be viewed as wk+1
l+1 = T (wk+1

l ). Since T is a contractive mapping, then

the inner sequence {wk+1
l }l converges to LM(wk), which is the unique fixed point of T as well

as the unique solution of equation (2.18). Therefore, we obtain the following proposition.

Proposition 2.11 Let M be a d × d matrix such that ‖M‖R < 1. Then LM is an M -

operator associated with proxF,R ◦ E. Furthermore, for any vector wk ∈ Rd, the sequence

{wk+1
l }l generated by equation (2.28), given any initial vector wk+1

0 ∈ Rd, converges to

LM(wk).

Proof. Let T be the operator defined in equation (2.27). Since proxF,R is firmly nonexpansive

with respect to R and ‖M‖R < 1, then it follows from Definition 2.9 that T for any vector

wk ∈ Rd defined in (2.27) is contractive with contraction constant ‖M‖R with respect to

R. Thus, it follows from Theorem 2.10 that the fixed point of T is unique and {wk+1
l }l,

generated by wk+1
l+1 = T (wk+1

l ), i.e., equation (2.28), converges to the unique fixed point of

T . Therefore, LM is an M -operator associated with proxF,R ◦ E and {wk+1
l }l converges to

the unique solution LM(wk).

In fact, the assumption ‖M‖R < 1 can be relaxed, depending on the block structure of
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M . The fixed point problem of T mentioned above may be reformulated to another fixed

point problem, where contractive mappings in the inner loops can be constructed with a

weaker condition than ‖M‖R < 1. We will discuss such assumption case by case in the

examples of implicit fixed-point proximity algorithms in Chapter 3.

2.5.4 Property 2: LM can be evaluated efficiently

Including Property 2 in the convergence assumptions of Algorithm 1 is of our practical

interest, because the performance of Algorithm 1 is related to the computational efficiency

of LM .

Next, we demonstrate that Algorithm 1 can evaluate the operator LM efficiently if As-

sumption (A1.1) is satisfied.

Algorithm 1 computes LM(wk) in equation (2.17) by inner iterations via contractive

mappings. It is shown in Proposition 2.11 that the inner sequence {wk+1
l }l, generated by

equation (2.28) in the inner loops of Algorithm 1, converges to the unique solution LM(wk).

Moreover, we show in the following proposition that {wk+1
l }l converges with a geometric

convergence rate.

Proposition 2.12 Let M be a d × d matrix such that ‖M‖R = q ∈ [0, 1). Then, for any

wk ∈ Rd, if the sequence {wk+1
l }l is generated by equation (2.28), given any initial vector

wk+1
0 ∈ Rd, then we have

‖wk+1
l+1 − w

k+1
∞ ‖R ≤

ql

1− q
‖wk+1

1 − wk+1
0 ‖R,

where wk+1
∞ is the unique solution of LM(wk).

Proof. ‖M‖R = q ∈ [0, 1) implies that T is a contractive mapping with the contraction

constant q. Thus, the result immediately follows from [40].

One major concern about implicit algorithms with inner iterations is that the computa-
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tional cost may increase dramatically compared to explicit algorithms, in order to maintain

the accuracy of the inner solution. However, the inner sequence {wk+1
l }l, generated by con-

tractive mappings, has a geometric convergence rate. And the inner sequence converges

faster as the contraction constant ‖M‖R gets smaller. Therefore, only few iterations in the

inner loop are needed to achieve the inner solution with high precision, and the operator LM

of Algorithm 1 satisfies Property 2.

2.5.5 Property 3: LM is nonexpansive

The nonexpansiveness mentioned in Property 3 is one of the convergence assumptions

required in Theorem 2.5 for Krasnosel’skǐı–Mann algorithm. As fixed-point proximity algo-

rithms generated by equation (2.17) have Krasnosel’skǐı–Mann iterative schemes, the con-

vergence assumptions of Algorithm 1 should include Property 3.

First, we prove that Assumption (A1.2) and (A1.3) can imply that the operator LM of

Algorithm 1 is firmly nonexpansive with respect to R and further guarantee that Property

3 is satisfied.

Suppose LM is an M -operator associated with proxF,R ◦ E as defined in Definition 2.7.

Then LM , a reformulation of proxF,R ◦E, can preserve the firm nonexpansiveness of proxF,R

if R(E −M) ∈ Sd+ and R(E − I) is skew-symmetric.

Lemma 2.13 Let LM be an M -operator associated with proxF,R ◦ E. Suppose ui ∈ Rd,

and vi = LM(ui), i = 1, 2. Then

〈v1 − v2, R(I −M)(v1 − v2)〉 ≤ 〈v1 − v2, R(E −M)(u1 − u2)〉.

Proof. By the definition of LM in Definition 2.7,

vi = proxF,R(Mvi + (E −M)ui).
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It follows from Definition 2.2 and Lemma 2.3 that proxF,R is firmly nonexpansive with respect

to R, i.e.,

〈v1 − v2, R(v1 − v2)〉 ≤ 〈v1 − v2, RM(v1 − v2) +R(E −M)(u1 − u2)〉.

Thus, after combining 〈v1− v2, R(v1− v2)〉 on the left-hand side with 〈v1− v2, RM(v1− v2)〉

on the right-hand side, the result immediately follows.

Proposition 2.14 Let LM be an M -operator associated with proxF,R ◦E. Suppose R(E−

I) ∈ Rd×d is a skew-symmetric matrix and

R(E −M) ∈ Sd+.

Then LM is firmly nonexpansive with respect to R(E −M).

Proof. Suppose ui ∈ Rd and vi = LM(ui), i = 1, 2. If R(E − I) is a skew-symmetric matrix,

then 〈v1 − v2, R(E − I)(v1 − v2)〉 = 0. Thus,

〈v1 − v2, R(I −M)(v1 − v2)〉 = 〈v1 − v2, R(I −M)(v1 − v2)〉+ 〈v1 − v2, R(E − I)(v1 − v2)〉

= 〈v1 − v2, R(E −M)(v1 − v2)〉,

and Lemma 2.13 implies

〈v1 − v2, R(E −M)(v1 − v2)〉 ≤ 〈v1 − v2, R(E −M)(u1 − u2)〉.

If R(E − M) ∈ Sd+, then 〈·, ·〉R(E−M) is an inner product and ‖ · ‖R(E−M) is a norm.

Therefore,

‖v1 − v2‖2
R(E−M) ≤ 〈v1 − v2, u1 − u2〉R(E−M)
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and LM is firmly nonexpansive with respect to R(E −M).

Firm nonexpansiveness implies nonexpansiveness, so Proposition 2.14 demonstrates that

Property 3 on the operator LM of Algorithm 1 can be achieved if R(E − M) ∈ Sd+ and

R(E − I) is a skew-symmetric matrix.

The two block matrices R(E − I) and R(E − M) mentioned in the assumptions can

be computed via block matrix calculation. It is easy to verify whether R(E − I) is skew-

symmetric or not, while it requires extra calculation to verify symmetric positive definite

matrices.

Second, we present a lemma for symmetric positive definite matrices, which serves as an

efficient tool for verifying the assumption R(E −M) ∈ Sd+.

Lemma 2.15 If

H =

A B>

B C

 ∈ Rn+m

is a symmetric matrix, and C ∈ Sm+ , then H ∈ Sn+m
+ if and only if A−B>C−1B ∈ Sn+.

Proof.

In −B>C−1

0 Im


A B>

B C


 In 0

−C−1B Im

 =

A−B>C−1B 0

0 C


Hence, H ∈ Sn+m

+ if and only if A−B>C−1B ∈ Sn+.

If R(E −M) is a 2 × 2 block matrix, then its symmetric positive definiteness can be

verified directly by applying Lemma 2.15. If R(E −M) has more blocks, then it can still be

viewed as a 2× 2 block matrix and we can apply Lemma 2.15 more than once to verify its

symmetric positive definiteness.
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Last, we shall mention that Proposition 2.14 may not be applicable to verify Property 3

if the assumptions in Proposition 2.14 cannot be achieved.

There are two assumptions in Proposition 2.14. One is that R(E − I) is skew-symmetric

and the other is that R(E − M) ∈ Sd+. The matrices E and R are determined by the

optimization problem (P1) as well as the fixed point problem (2.12) under the framework.

In some variants of the fixed point problem, the corresponding matrix R(E− I) is not skew-

symmetric. For example, for the matrix E in (2.13), the corresponding matrix R(E − I)

is

R(E − I) =

 −A>

A −AP̃−1A>

 ∈ R(n+m)×(n+m).

This matrix is not skew-symmetric unless P̃−1 = 0. So we cannot apply Proposition 2.14 to

check Property 3 for the case when P̃−1 ∈ Sn+.

If Proposition 2.14 is not applicable to verify Property 3, we have to carefully construct

the matrix M and prove that its corresponding operator LM is nonexpansive by using the

definition of nonexpansive operators in Definition 2.2.

All in all, Property 3 can be verified by either applying Proposition 2.14 or utilizing the

definition of nonexpansive operators to prove it.

2.5.6 Possible block structures of M for implicit algorithms

Based on the previous results, theoretically, it is possible to develop feasible and efficient

implicit fixed-point proximity algorithms if Assumption (A1.1), (A1.2) and (A1.3) are satis-

fied and there is no restriction on the block structure of M . However, practically, the block

structure of M plays an important role in the performance of implicit algorithms. Depending

on the block structure of M , Algorithm 1 can be improved and the convergence assumptions

can be also be relaxed.

Next, we present two proposed block structures for M whose corresponding operator LM

can be computed efficiently by inner iterations via contractive mappings.
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(i) Skew diagonal block matrix with zero diagonal blocks

M =

 ×

×


(ii) Matrix with special structure with zero diagonal blocks

M =


×

×

× ×


We will propose several implicit fixed-point proximity algorithms with the above block

structures of M in Chapter 3.

2.5.7 Convergence analysis

In the following, we conduct a convergence analysis on the implicit fixed-point proximity

algorithm stated in Algorithm 1. In particular, we prove that the sequence generated by

Algorithm 1 converges with a rate of O( 1
K

), where K is the number of outer iterations.

Algorithm 1 is developed from the perspective of the fixed-point proximity equation and

is specifically designed for those algorithms in which the operator LM has a fully implicit

scheme. The operator LM is evaluated by performing inner iterations via contractive map-

pings. By taking into consideration the errors caused by the inner loops, the sequence {wk}

generated by Algorithm 1 can be viewed as a sequence generated by the following inexact

Krasnosel’skǐı–Mann iteration

wk+1 = wk + λk
(
LM(wk) + ek − wk

)
, (2.29)

where ek ∈ Rd represents the computational errors caused by computing LM approximately.

Theorem 2.5 for exact Krasnosel’skǐı–Mann algorithms is not sufficient to guarantee

the convergence of an implicit fixed-point proximity algorithm, and the convergence results

for existing fixed-point proximity algorithms are also not applicable to implicit algorithms.
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Therefore, we utilize the definitions and techniques introduced in [23, 25] to complete the

proof for the convergence of Algorithm 1.

First, let us introduce the definition of quasi-Fejér monotonicity and some convergence

results in [23]. The quasi-Fejér monotonicity is an extension of Fejér monotonicity, which

can address the errors ek from inner iterations.

Definition 2.16 A sequence {xk} in Rd is said to be a quasi-Fejér monotone sequence

relative to a target set S ⊆ Rd if there exists εk ≥ 0 such that
∑
εk <∞ and for all x ∈ S,

‖xk+1 − x‖ ≤ ‖xk − x‖+ εk.

Note that this definition of the quasi-Fejér monotonicity refers to the quasi-Fejér mono-

tonicity of Type I in [23]. Also, if εk = 0 for all k ∈ N then quasi-Fejér monotone reduces to

Fejér monotone.

Lemma 2.17 [23] Let C ∈ (0, 1], let {αk} be a sequence in (0,+∞), let {βk} be a sequence

in (0,+∞), and let {εk} be a summable sequence in (0,+∞) such that

αk+1 ≤ Cαk − βk + εk.

Then {αk} converges and
∑

k |βk| <∞.

Theorem 2.18 Suppose {xk} is a quasi-Fejér monotone sequence relative to a nonempty

set S in Rd. Let C{xk} denote the set of cluster points of {xk}. Then {xk} converges to a

point in S if and only if C{xk} ⊂ S.

Proof. The result follows from Proposition 3.2 and Theorem 3.8 in [23].

If the sequence {wk} generated by Algorithm 1 is quasi-Fejér monotone with respect to the

set of solutions of problem (P1), then the convergence of {wk} to a solution of problem (P1)
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can be achieved by verifying the sufficient and necessary condition mentioned in Theorem

2.18. That is to verify if every convergent subsequence of {wk} converges to a solution of

problem (P1).

Second, let us introduce the demiclosed principle for nonexpansive operators, in order to

study the convergence behavior of each convergent subsequence of {wk}.

Theorem 2.19 (Demiclosed Principle) [38] Let T : Rd → Rd be a nonexpansive op-

erator with respect to H ∈ Sd+, let {xk} be a sequence in Rd, and let x be a point in Rd.

Suppose that {xk} converges to x and that {xk − Txk} converges to 0. Then x ∈ Fix T .

Now, with the results above, we are ready to prove the convergence of the sequence {wk}

generated by equation (2.29). The proof is presented in three steps. First, we show that {wk}

is a quasi-Fejér monotone sequence relative to the solution set, which is Fix (proxF,R ◦E) =

Fix (LM). Second, we prove that the assumptions of the demiclosed principle are satisfied,

and that therefore the limit of {wk} is exactly a fixed point of LM . Last, by applying both

Theorem 2.18 and Theorem 2.19, the convergence of {wk} is eventually achieved.

Note that the proof of the following theorem is adapted from the proof in [23,24] so that

it is more applicable to implicit fixed-point proximity algorithms. And this proving strategy

can be utilized for implicit fixed-point proximity algorithms with uncommon structures.

Theorem 2.20 Assume that Fix (proxF,R ◦E) 6= ∅. Let LM be an M -operator associated

with proxF,R ◦E and LM is nonexpansive with respect to H ∈ Sd+. Let {λk} be a sequence in

[0, 1] and {ek} be a sequence in Rd such that
∑

k λk(1 − λk) = +∞ and
∑

k λk‖ek‖H < ∞.

Suppose the sequence {wk} is generated by equation (2.29) with an initial vector w0 ∈ Rd.

Then the following statements hold.

(i) {wk} is a quasi-Fejér monotone sequence relative to Fix (proxF,R ◦ E);

(ii) {LMwk − wk} converges to 0;

(iii) {wk} converges to a point in Fix (proxF,R ◦ E).
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Proof. Let w∗ ∈ Fix (proxΦ,R ◦ E), then by Proposition 2.8, w∗ = proxF,R(Ew∗) and w∗ =

LM(w∗).

(i) It follows from the nonexpansive property of LM that

∥∥wk+1 − w∗
∥∥
H

=
∥∥(1− λk)wk + λkLM(wk) + λkek − w∗

∥∥
H

≤ λk‖LM(wk)− w∗‖H + λk‖ek‖H + (1− λk)‖wk − w∗‖H

= λk‖LM(wk)− LM(w∗)‖H + λk‖ek‖H + (1− λk)‖wk − w∗‖H

≤ ‖wk − w∗‖H + λk‖ek‖H .

Hence, {wk} is a quasi-Fejér monotone sequence relative to Fix (proxΦ,R ◦ E).

(ii) Since (1− λk)Id + λkLM is λk-average, then by Lemma 2.4

∥∥(1− λk)wk + λkLM(wk)− w∗
∥∥2

H
≤ ‖wk −w∗‖2

H −
1− λk
λk
‖(1− λk)wk + λkLM(wk)−wk‖2

H .

Let C = supk{2
∥∥wk − w∗∥∥

H
+ ‖ek‖H} < +∞. Then we have

∥∥wk+1 − w∗
∥∥2

H
=
∥∥(1− λk)wk + λkLM(wk) + λkek − w∗

∥∥2

H

≤
(∥∥(1− λk)wk + λkLM(wk)− w∗

∥∥
H

+ λk‖ek‖H
)2

≤
∥∥(1− λk)wk + λkLM(wk)− w∗

∥∥2

H
+ C‖ek‖H

≤ ‖wk − w∗‖2
H −

1− λk
λk
‖(1− λk)wk + λkLM(wk)− wk‖2

H + C‖ek‖H

= ‖wk − w∗‖2
H − λk(1− λk)‖LM(wk)− wk‖2

H + C‖ek‖H .

It follows from Lemma 2.17 that
∑

k λk(1 − λk)‖LM(wk) − wk‖2
H < +∞. Since

∑
k λk(1 −
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λk) = +∞, then lim infk→∞ ‖LM(wk)− wk‖2
H = 0. We have

‖LM(wk+1)− wk+1‖H = ‖LM(wk+1)− (1− λk)wk − λkLM(wk)− λkek‖H

≤ ‖LM(wk+1)− LM(wk)‖H + (1− λk)‖LM(wk)− wk‖H + λk‖ek‖H

≤ ‖wk+1 − wk‖H + (1− λk)‖LM(wk)− wk‖H + λk‖ek‖H

= ‖λk(LM(wk)− wk) + λkek‖H + (1− λk)‖LM(wk)− wk‖H + λk‖ek‖H

≤ ‖LM(wk)− wk‖H + 2λk‖ek‖H .

Since
∑

k 2λk‖ek‖H < +∞, then, by Lemma 2.17, ‖LM(wk)− wk‖H converges to 0. Hence,

{LM(wk)− wk} converges to 0.

(iii) Suppose {wki} is a convergent subsequence of {wk}, then {LM(wki)−wki}i converges

to 0. By the demiclosed principle in Theorem 2.19, {wki} converges to a fixed point in

Fix (proxF,R ◦E). So C{wk} ⊂ Fix (proxF,R ◦E). Hence, it follows from Theorem 2.18 that

{wk} converges to a fixed point in Fix (proxF,R ◦ E).

If LM is firmly nonexpansive with respect to H, which is a stronger condition than the

nonexpansive assumption mentioned in Theorem 2.20, then the parameter λk can be chosen

in [0, 2] instead of [0, 1].

Corollary 2.21 Assume that Fix (proxF,R ◦E) 6= ∅. Let LM be an M -operator associated

with proxF,R ◦ E and LM is firmly nonexpansive with respect to H ∈ Sd+. Let {λk} be

a sequence in [0, 2] and {ek} be a sequence in Rd such that
∑

k λk(2 − λk) = +∞ and∑
k λk‖ek‖H <∞. Then sequence {wk} generated by equation (2.29) with an initial vector

w0 ∈ Rd converges to a point in Fix (proxF,R ◦ E).

Proof. Since LM is firmly nonexpansive with respect to H, then by Lemma 2.4 there exists
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a nonexpansive operator R with respect to H such that LM = 1
2
Id + 1

2
R. Thus,

wk+1 = wk +
λk
2

(
R(wk) + 2εk − wk

)
.

Then the result immediately follows from Theorem 2.20.

The convergence results mentioned above guarantee that the sequence generated by Al-

gorithm 1 converges if LM satisfies three properties discussed in the previous subsections,

and the errors caused by inner iterations are summable.

Next, we study the theoretical convergence rate of Algorithm 1 in the sense of the partial

primal-dual gap [82] without taking inner errors into consideration. The partial primal-dual

gap of the average of the sequence {w1, w2, . . . , wK}, generated by Algorithm 1, vanishes

with a rate of O( 1
K

), where K is the number of outer iterations.

Proposition 2.22 Let LM be an M -operator associated with proxF,R ◦E. Suppose R(E−

I) ∈ Rd×d is a skew-symmetric matrix and R(E −M) ∈ Sd+. Let wk ∈ Rd, k = 0, . . . , K − 1

be a sequence generated by wk+1 = LM(wk). Then, for any vector w ∈ Rd, the partial

primal-dual gap

G(w̄K , w) ≤ 1

2K
‖w − w0‖2

R(E−M),

where G(w1, w2) = F (w1)− F (w2) + 〈w1, R(E − I)w2〉, and w̄K = 1
K

∑K
k=1w

k.

Proof. Since wk+1 = proxF,R(Mwk+1 + (E −M)wk), then by equation (2.4)

R(E −M)wk +R(M − I)wk+1 ∈ ∂F (wk+1).
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By the definition of subdifferential in equation (2.1),

F (w) ≥ F (wk+1) + 〈R(E −M)wk +R(M − I)wk+1, w − wk+1〉

= F (wk+1) + 〈R(E −M)wk −R(E −M)wk+1 +R(E − I)wk+1, w − wk+1〉

= F (wk+1) + 〈R(E −M)(wk − wk+1), w − wk+1〉+ 〈R(E − I)wk+1, w − wk+1〉.

Since R(E − I) is a skew-symmetric matrix, then we have

〈R(E − I)wk+1, w − wk+1〉 = 〈R(E − I)wk+1, w〉 = 〈wk+1, R(E − I)w〉

and

F (w) = F (wk+1) + 〈wk+1, R(E − I)w〉+ 〈w − wk+1, R(E −M)(wk − wk+1)〉.

Hence, the partial primal-dual gap

G(wk+1, w) =F (wk+1)− F (w) + 〈wk+1, R(E − I)w〉

≤〈w − wk+1, R(E −M)(wk+1 − wk)〉

=
1

2
‖w − wk‖2

R(E−M) −
1

2
‖w − wk+1‖2

R(E−M) −
1

2
‖wk+1 − wk‖2

R(E−M).

Summing both sides from k = 0, 1, . . . , K − 1, we have

K−1∑
k=0

G(wk+1, w) ≤ 1

2
‖w − w0‖2

R(E−M) −
1

2
‖w − wK‖2

R(E−M) −
1

2

K−1∑
k=0

‖wk+1 − wk‖2
R(E−M)

≤ 1

2
‖w − w0‖2

R(E−M),

since ‖w − wK‖2
R(E−M) and ‖wk+1 − wk‖2

R(E−M) are non-negative.
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By the convexity of G(·, w), we have

G(w̄K , w) ≤ 1

2K
‖w − w0‖2

R(E−M).



Chapter 3

Examples of Implicit Fixed-point

Proximity Algorithms

In this chapter, we propose to develop several implicit fixed-point proximity algorithms

for different optimization problems. Those algorithms are established under the implicit

fixed-point proximity framework introduced in Chapter 2. A detailed convergence analysis

will be conducted for each proposed implicit algorithm.

Before presenting these implicit fixed-point proximity algorithms, we introduce the gen-

eral procedure for constructing implicit algorithms for composite optimization problems that

can be identified as problem (P1).

First, we formulate the composite optimization problem as problem (P1) and then char-

acterize its solutions as the solutions of a system of fixed point equations in the form of the

unified fixed point equation (2.12).

Second, to form an implicit operator LM defined in Definition 2.7, we propose a block

structure for the matrix M and carefully construct the block matrix elements. In particular,

the resulting LM can be computed iteratively by contractive mappings.

Third, we obtain an implicit fixed-point proximity algorithm, which generates a sequence

48
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{wk} by the following equation

wk+1 = wk + λk
(
LM(wk)− wk

)
, (2.17)

where λk > 0 and LM(wk) is the unique solution of the following implicit equation

w = proxF,R(Mw + (E −M)wk). (2.18)

Last, we study the assumptions on algorithm parameters in order to guarantee the pro-

posed LM satisfies Property 1, Property 2 and Property 3 under the implicit fixed-point

proximity framework. Then a convergence analysis of the proposed implicit fixed-point

proximity algorithm is conducted with theoretical results.

Now, we utilize this procedure to develop several implicit fixed-point proximity algo-

rithms. Each algorithm is designed for a different optimization problem with different num-

bers of convex functions and linear operators.

3.1 Example 1

The first example is to minimize a separable sum of two convex functions, of which one

convex function is composited with a linear operator.

min
x∈Rn

f1(x) + f2(Bx), (P2)

where B is an m × n matrix, and f1 : Rn → (−∞,+∞], and f2 : Rm → (−∞,+∞] are

proper, lower semi-continuous, and convex.

Among the optimization problems presented in Chapter 1, the following problems have

the form of problem (P2): ROF model, L1-TV denoising model, framelet-based denoising

models, and `1-regularized linear least squares problem.
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3.1.1 Fixed point characterization

Problem (P2) is a special case of problem (P1) with f : Rn+m → (−∞,+∞] defined by

f(y) = f1(u) + f2(v), where

y =

u
v

 ∈ Rn+m and A =

In
B

 . (3.1)

By applying Proposition 2.6, the solutions of problem (P2) can be characterized as the

solutions of the system of fixed point equations (2.9). The second equation in equations (2.9)

involves proxf∗,Q, which is the proximity operator of f ∗. Note that f ∗(y) = f ∗1 (u) + f ∗2 (v)

is a block separable sum of two convex functions. So if we set Q = diag(Q1, Q2), Q1 ∈ Sn+,

and Q2 ∈ Sm+ , then it follows from the properties of proximity operator for block separable

functions that the equation with proxf∗,Q consists of two equations. One equation is with

respect to the variable u, and the other equation is with respect to the variable v. Thus, the

system of fixed point equations (2.9) is corresponding to the following system


x = x− P−1(u+B>v)

u = proxf∗1 ,Q1
(u+Q−1

1 x)

v = proxf∗2 ,Q2
(v +Q−1

2 Bx).

(3.2)

Although equations (3.2) can characterize the solutions of problem (P2), this system

contains a redundant variable due to the fact that one of the matrix blocks of A defined

as (3.1) is the identity matrix. The redundant variable may increase the complexity in the

procedure later for developing implicit algorithms. So we eliminate the redundant variable

from the system and obtain an equivalent variant of equations (3.2) with fewer fixed point

equations.

The equivalent variant of equations (3.2) that consists of only two fixed point equations

is presented in the following proposition. We combine the first and second equation in
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equations (3.2) into one equation in terms of only the variable x, by using equation (2.5) to

convert the proximity operator of f ∗1 into the proximity operator of f1. Then the variable

u in the system can be eliminated from the system and the resulting system of fixed point

equations is equivalent to equations (3.2).

Proposition 3.1 Suppose that the set of solutions of problem (P2) is nonempty. If a

vector x ∈ Rn is a solution of problem (P2), then for any α > 0 and β > 0, there exists a

vector y ∈ Rm such that the following system of equations holds


x = proxαf1(x− αB

>y)

y = proxβf∗2 (y + βBx).

(3.3)

Conversely, if there exist α > 0, β > 0, x ∈ Rn and y ∈ Rm satisfying the system of equations

(3.3), then x is a solution of problem (P2).

Proof. According to Proposition 2.6, the solutions of problem (P2) are characterized as

equations (3.2). Then, it follows from the first equation in equations (3.2) that u = −B>v.

By substituting this equation into the variable u in the second equation in equations (3.2),

we have

−B>v = proxf∗1 ,Q1
(−B>v +Q−1

1 x).

This equation can be further rewritten as follows, by using equation (2.5) to convert the

proximity operator of f ∗1 into the proximity operator of f1.

−B>v = −B>v +Q−1
1 x−Q−1

1 proxf1,Q−1
1

(Q1(−B>v +Q−1
1 x))

x = proxf1,Q−1
1

(−Q1B
>v + x).

Then the variable u is eliminated from equations (3.2) and the first two equations in equations
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(3.2) are combined into one equation. We obtain the system of equations (3.3) by redefining

v = y, and choosing Q1 = αIn and Q2 = 1
β
Im, where α > 0 and β > 0.

Under the implicit fixed-point proximity framework, the system of fixed point equations

(3.3) that characterizes the solutions of problem (P2) is written as the unified fixed point

equation (2.12) with F : Rn+m → (−∞,+∞] defined by F (w) = f1(x) + f ∗2 (y), R =

diag
(

1
α
In,

1
β
Im

)
, α > 0, β > 0,

w =

x
y

 ∈ Rn+m and E =

 In −αB>

βB Im

 ∈ R(n+m)×(n+m). (3.4)

Then a fixed-point proximity algorithm, developed from this unified fixed point equation,

generates a sequence {wk} that follows equation (2.17) with function F and matrices E and

R defined as above.

3.1.2 Existing fixed-point proximity algorithms

There are three existing fixed-point proximity algorithms for solving problem (P2) intro-

duced in Section 2.4. They are primal dual algorithm (2.21), FP2O (2.23), and ASBI (2.25).

Among those algorithms, there are two block structures of the matrix M observed. PD has

the strictly block lower triangular matrix structure of M as shown in equation (2.22) and its

LM has a closed form. Both of FP2O and ASBI have the matrix structure of M with one

nonzero diagonal block as shown in equation (2.24) and (2.26) respectively, and their LM

have implicit expressions but can be computed explicitly.

The existing fixed-point algorithms that have the block structures mentioned above are

explicit algorithms. They either have a relatively strict convergence assumption or can be

applied to a limited number of optimization problems. So in the next section, we aim to

propose a novel block structure of M and develop a fixed-point proximity algorithm with a
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fully implicit LM .

3.1.3 Implicit fixed-point proximity algorithm

In the following, we first propose a block structure for the matrix M to develop an implicit

fixed-point proximity algorithm for problem (P2) via contractive mappings, and then study

the convergence assumptions for the proposed implicit algorithm.

First, we start with a block structure for the matrix M , which has skew diagonal blocks

defined as follows

M =

 0 M1

M2 0

 , (3.5)

where M1 ∈ Rn×m and M2 ∈ Rm×n.

Due to the skew diagonal block structure of M , LM has an implicit expression and

equation (2.18) for solving w = LM(wk) under the implicit fixed-point proximity framework

is corresponding to the following system of fixed point equations


x = proxαf1(M1y + xk + (−αB> −M1)yk)

y = proxβf∗2 (M2x+ (βB −M2)xk + yk).

(3.6)

Second, we construct a contractive mapping to solve this system (3.6). The skew diagonal

block structure ofM provides a convenient way to construct a contractive mapping for solving

equations (3.6). In particular, equations (3.6) can be recognized as a fixed point problem in

terms of only one unknown variable. For example, by substituting the second equation into

the y variable in the first equation, we obtain the following equation in terms of only one

variable x

x = proxαf1(M1proxβf∗2 (M2x+ (βB −M2)xk + yk) + xk + (−αB> −M1)yk).

This implicit equation, for any given vector xk and yk, can be viewed as a fixed point equation
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x = T (x) where T : Rn → Rn is defined as

T (x) = proxαf1(M1proxβf∗2 (M2x+ (βB −M2)xk + yk) + xk + (−αB> −M1)yk). (3.7)

If ‖M1‖2‖M2‖2 < 1, then the operator T is a contractive mapping and there exists an

iterative sequence that converges to the unique solution of the fixed point problem.

Third, the implicit fixed-point proximity algorithm that has the matrix M with the skew

diagonal block structure defined as (3.5) is presented as follows.

Algorithm 2 Implicit Fixed-point Proximity Algorithm for problem (P2)

1: Choose , x0 ∈ Rn, y0 ∈ Rm, λk ∈ [0, 2]

2: for k from 1 to K do

3: Compute LM(wk) via the inner loop:

4: Set l = 0, choose xk+1
0 ∈ Rn

5: repeat

6: yk+1
l+1 = proxβf∗2 (M2x

k+1
l + (βB −M2)xk + yk) . Inner step 1

7: xk+1
l+1 = proxαf1(M1y

k+1
l+1 + xk + (−αB> −M1)yk) . Inner step 2

8: l← l + 1

9: until stopping criterion is satisfied

10: LM(wk) = wk+1
∞ . wk+1

∞ is the output from the inner loop

11: wk+1 = wk + λk(LM(wk)− wk)

12: end for

In order to ensure that the proposed LM with a fully implicit expression satisfies Property

1, Property 2 and Property 3 under the implicit fixed-point proximity framework, there are

three convergence assumptions for Algorithm 2.
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Assumption (A2.1) ‖M1‖2‖M2‖2 < 1;

Assumption (A2.2) 1
β
M2 − 1

α
M>

1 = 2B;

Assumption (A2.3) Im − αβ
(
B − 1

β
M2

) (
−B> − 1

α
M1

)
∈ Sm+ .

3.1.4 Convergence analysis

In the following, we illustrate that Assumption (A2.1), (A2.2) and (A2.3) can guarantee

Property 1, Property 2 and Property 3 on the operator LM with the choice of M defined as

(3.5), and then conduct a convergence analysis on Algorithm 2.

(i) Property 1 and Property 2

Assumption (A2.1) yields that the operator T defined as (3.7) is a contractive mapping,

so its corresponding LM satisfies Property 1 and Property 2 as shown in the following

proposition.

Proposition 3.2 Let M be an (n + m) × (n + m) matrix defined as (3.5). Suppose that

‖M1‖2‖M2‖2 < 1. Then LM is an M -operator associated with proxF,R ◦E. Furthermore, for

any vector wk =

[
xk
>

yk
>
]>
∈ Rn+m, the sequence {wk+1

l }l generated by the 6th-7th line

in Algorithm 2, that is,


yk+1
l+1 = proxβf∗2 (M2x

k+1
l + (βB −M2)xk + yk)

xk+1
l+1 = proxαf1(M1y

k+1
l+1 + xk + (−αB> −M1)yk)

(3.8)

converges to LM(wk), given any initial vector xk+1
0 ∈ Rn.

Proof. Let T be the operator defined as (3.7). Suppose that ‖M1‖2‖M2‖2 < 1. Since

proxβf∗2 and proxαf1 are firmly nonexpansive with respect to the standard `2 norm, then T is

contractive for any vector wk ∈ Rn+m. Thus, it follows from Banach fixed point theorem in
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Theorem 2.10 that the fixed point of T is unique and that LM is an M -operator. Moreover,

the sequence {wk+1
l }l, generated by equations (3.8), converges to the unique solution LM(wk).

Assumption (A2.1) ‖M1‖2‖M2‖2 < 1 for Algorithm 2 is different from Assumption (A1.1)

‖M‖R < 1 for Algorithm 1, which is an implicit fixed-point proximity algorithm designed in a

general setting. Here, the norm ‖·‖R can be replaced by the standard `2 norm, because both

proxαf1 and proxβf∗2 are firmly nonexpansive with respect to the standard `2 norm. Also,

the assumption ‖M‖2 = max(‖M1‖2, ‖M2‖2) < 1 can be replaced by a weaker assumption

‖M1‖2‖M2‖2 < 1, thanks to the skew diagonal block structure of M .

(ii) Property 3

Assumption (A2.2) and (A2.3) in Algorithm 2 guarantee that LM satisfies Property 3.

According to Proposition 2.14, LM is firmly nonexpansive with respect to R(E − M) if

R(E − I) is skew symmetric and R(E −M) ∈ Sn+m
+ .

In Algorithm 2, the matrix E is defined as (3.4) and the matrix M is defined as (3.5).

Then the matrix R(E − I) and R(E −M) can be computed as follows

R(E − I) =

 0 −B>

B 0

 and R(E −M) =

 1
α
In −B> − 1

α
M1

B − 1
β
M2

1
β
Im

 .
It is clear that R(E−I) is skew symmetric. And by using the following lemma, R(E−M) ∈

Sn+m
+ can also be verified, provided that Assumption (A2.2) and Assumption (A2.3) are

satisfied.

Lemma 3.3 Let M be defined as (3.5). Then the matrix R(E −M) ∈ Sn+m
+ if and only if

1
β
M2 − 1

α
M>

1 = 2B, and Im − αβ
(
B − 1

β
M2

) (
−B> − 1

α
M1

)
∈ Sm+ .

Proof. The result immediately follows from Lemma 2.15.
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In summary, for the matrix M with skew diagonal blocks defined as (3.5), Assumption

(A2.1), (A2.2) and (A2.3) in Algorithm 2 can imply that its corresponding operator LM

satisfies three essential properties required under the fixed-point proximity framework.

(iii) Convergence theorem

Next, we conduct a convergence analysis for Algorithm 2 with a specific choice of M

defined as follows

M =

 0 (−1− θ)αB>

(1− θ)βB 0

 , (3.9)

where θ ∈ R. Then the corresponding R(E −M) automatically satisfies Assumption (A2.2)

shown as follows

R(E −M) =

 1
α
In θB>

θB 1
β
Im

 .
If |θ| = 1, then M is a strictly block lower or upper triangular matrix and LM has an

explicit expression, which results in an explicit fixed-point proximity algorithm. In particular,

when θ = −1, the fixed-point proximity algorithm is exactly primal dual algorithm (2.21)

and it converges if αβ‖B‖2
2 < 1.

If |θ| 6= 1, then LM has an implicit expression, which results in an implicit fixed-point

proximity algorithm as Algorithm 2. The three convergence assumptions under the implicit

fixed-point proximity framework can be reinterpreted. Assumption (A2.1) is corresponding

to αβ|1−θ2|‖B‖2
2 < 1, which ensures that inner iterations (3.8) are generated by contractive

mappings. Assumption (A2.3) is corresponding to αβθ2‖B‖2
2 < 1, which guarantees that

R(E −M) ∈ Sn+m
+ .

The convergence assumptions of the proposed implicit fixed-point proximity algorithm

with the choice of M defined as (3.9) with |θ| 6= 1 can be summarized in the following

theorem.
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Theorem 3.4 Assume that Fix (proxF,R ◦E) 6= ∅. Let M be defined as (3.9) with |θ| 6= 1

and let λk ∈ [0, 2] such that
∑

k λk(2 − λk) = +∞. Suppose that the following conditions

hold

(a) αβ|1− θ2|‖B‖2
2 < 1;

(b) αβθ2‖B‖2
2 < 1.

Then the sequence {wk}, generated by Algorithm 2, converges to a solution of problem (P2)

if the errors from inner iterations are summable.

Proof. Assumption (A2.2) is automatically satisfied. The condition (a) implies Assumption

(A2.1), and the condition (b) implies Assumption (A2.3). Thus, the operator LM , corre-

sponding to the matrix M defined as (3.9) with |θ| 6= 1, has Property 1, Property 2 and

Property 3 under the implicit fixed-point proximity framework. Therefore, the result follows

from Theorem 2.20.

Compared to the explicit fixed-point proximity algorithm with |θ| = 1, the proposed

implicit fixed-point proximity algorithm with |θ| 6= 1 allows a wider selection range of the

parameters α and β, which are the parameters of the proximity operators. For example,

the convergence assumption is αβ‖B‖2
2 < 1 in the case when |θ| = 1, while the conver-

gence assumption is αβ‖B‖2
2 < 2 in the case when |θ| = 1√

2
6= 1. In Chapter 4, we will

discuss the sensitivity of the parameter settings for the proposed implicit algorithm and

demonstrate that the proposed implicit algorithm outperforms existing explicit fixed-point

proximity algorithms in terms of computational time.
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3.2 Example 2

The second example is to minimize a separable sum of two convex functions composited

with linear operators

min
x∈Rn

f1(A1x) + f2(A2x), (P3)

where Ai is an mi × n matrix, and fi : Rmi → (−∞,+∞] is proper, lower semi-continuous,

and convex, i = 1, 2.

Among the optimization problems mentioned in Chapter 1, the following problems have

the form of problem (P3): L2-TV image restoration model, L1-TV image restoration model,

and framelet-based deblurring models.

3.2.1 Fixed point characterization

Problem (P3) is a special case of problem (P1) with f : Rm1+m2 → (−∞,+∞] defined

by f(y) = f1(u) + f2(v), where

y =

u
v

 ∈ Rm1+m2 and A =

A1

A2

 .
By applying Proposition 2.6, the solutions of problem (P3) can be characterized as the

solutions of the system of fixed point equations (2.9) with y =

[
u> v>

]>
∈ Rm1+m2 , P ∈ Sn+,

Q = diag(Q1, Q2), Q1 ∈ Sm1
+ , and Q2 ∈ Sm2

+ . That is the following system of equations


x = x− P−1(A>1 u+ A>2 v)

u = proxf∗1 ,Q1
(u+Q−1

1 A1x)

v = proxf∗2 ,Q2
(v +Q−1

2 A2x).

(3.10)

The system of fixed point equations (3.10) is suitable for developing parallel algorithms,

because the second equation does not involve the variable v and the third equation does not
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involve the variable u. Then u and v can be computed simultaneously without using each

other’s newest update.

However, u and v, in fact, are related to each other and connected through the variable x

in the first equation. So we derive an equivalent variant of equations (3.10) by substituting

the first equation with a different parameter P̃−1 ∈ Sn into the variable x in the second and

third equations. This variant reveals all the underlying relations between the variables and

has more flexibility for developing sequential algorithms.

Proposition 3.5 Suppose that the set of solutions of problem (P3) is nonempty. If a

vector x ∈ Rn is a solution of problem (P3), then, for any α1 > 0, α2 > 0, γ > 0 and β ≥ 0,

there exists vectors u ∈ Rm1 and v ∈ Rm2 such that the following equations hold


u = proxα1f∗1

(u+ α1A1(x− β(A>1 u+ A>2 v)))

v = proxα2f∗2
(v + α2A2(x− β(A>1 u+ A>2 v)))

x = x− γ(A>1 u+ A>2 v).

(3.11)

Conversely, if there exist α1 > 0, α2 > 0, γ > 0, β ≥ 0, x ∈ Rn, u ∈ Rm1 and v ∈ Rm2

satisfying the system of equations (3.11), then x is a solution of problem (P3).

Proof. According to Proposition 2.6, the solutions of problem (P3) are characterized as

equations (3.10). The following equation is the first equation in equations (3.10) with a new

parameter P̃−1 = βIn, β ≥ 0,

x = x− β(A>1 u+ A>2 v).

We substitute this equation into the variable x in the second and third equations in equa-

tions (3.10), and then obtain the system of equations (3.11) by interchanging equations and

choosing P = 1
γ
In, Q1 = 1

α1
Im1 , and Q2 = 1

α2
Im2 , where γ > 0, α1 > 0, and α2 > 0.
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Under the implicit fixed-point proximity framework, the system of fixed point equa-

tions (3.11) which characterizes the solutions of problem (P3) is written as the unified

fixed point equation (2.12) with F : Rm1+m2+n → R defined by F (w) = f ∗1 (u) + f ∗2 (v),

R = diag
(

1
α1
Im1 ,

1
α2
Im2 ,

1
γ
In

)
, α1 > 0, α2 > 0, γ > 0, β ≥ 0,

w =


u

v

x

 ∈ Rm1+m2+n

and

E =


Im1 − α1βA1A

>
1 −α1βA1A

>
2 α1A1

−α2βA2A
>
1 Im2 − α2βA2A

>
2 α2A2

−γA>1 −γA>2 In

 ∈ R(m1+m2+n)×(m1+m2+n). (3.12)

Then a fixed-point proximity algorithm, developed from this unified fixed point equation,

generates a sequence {wk} that follows equation (2.17) with function F and matrices E and R

defined as above. Apparently, it is more challenging to develop implicit fixed-point proximity

algorithms for problem (P3) compared to problem (P2).

3.2.2 Existing fixed-point proximity algorithms

We present one existing fixed-point proximity algorithm for solving problem (P3).

• Fixed-point Proximity Gauss-Seidel Method (FPGS) [16]: This algorithm is developed

from the perspective of the fixed-point proximity framework and the Gauss-Seidel

method. 
uk+1 = proxα1f∗1

(uk + α1A1(xk − β(A>1 u
k + A>2 v

k)))

vk+1 = proxα2f∗2
(vk + α2A2(xk − β(A>1 u

k+1 + A>2 v
k)))

xk+1 = xk − γ(A>1 u
k+1 + A>2 v

k+1).

(3.13)
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This algorithm can be identified as a fixed point proximity algorithm generated by

wk+1 = proxF,R(Mwk+1 + (E −M)wk), where the function F , and matrices R and E

are defined as (3.12), and the matrix M is chosen as follows

M =


0 0 0

−α2βA2A
>
1 0 0

−2γA>1 −2γA>2 0

 . (3.14)

The algorithm converges if α1β‖A1‖2
2 < 1, α2β‖A2‖2

2 < 1, γ ∈ (0, β], and β > 0.

In FPGS (3.13), the matrix M is a strictly block lower triangular matrix, and uk+1,

vk+1 and xk+1 can be computed explicitly in a sequential order, so LM has an explicit

expression and satisfies Property 1 and Property 2. It is proved in [16] that the sequence

{wk} generated by FPGS converges, even though the authors did not verify Property

3.

3.2.3 Implicit fixed-point proximity algorithms

In the following, we first propose a block structure for the matrix M to develop an implicit

fixed-point proximity algorithm for problem (P3) via contractive mappings, and then study

the convergence assumptions for the proposed implicit algorithm.

First, to develop an implicit fixed-point proximity algorithm for problem (P3), we con-

struct a matrix M with a novel block structure defined as follows

M =


0 −α1θA1A

>
2 0

−α2θA2A
>
1 0 0

−ρA>1 −ρA>2 0

 , (3.15)

where θ > 0 and ρ > 0.

Under the implicit fixed-point proximity framework, the operator LM corresponding to
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this matrix M has an implicit expression and w = LM(wk) is the unique solution of the

following system of fixed point equations


u = proxα1f∗1

(uk + α1A1(xk − θA>2 (v − vk)− β(A>1 u
k + A>2 v

k)))

v = proxα2f∗2
(vk + α2A2(xk − θA>1 (u− uk)− β(A>1 u

k + A>2 v
k)))

x = xk − ρ(A>1 u+ A>2 v) + (ρ− γ)(A>1 u
k + A>2 v

k).

(3.16)

We mainly study the following two cases with different parameters.

The first case is when β = 0 and ρ = 2γ, then equations (3.16) become the following

equations 
u = proxα1f∗1

(uk + α1A1(xk − θA>2 (v − vk)))

v = proxα2f∗2
(vk + α2A2(xk − θA>1 (u− uk)))

x = xk − 2γ(A>1 u+ A>2 v) + γ(A>1 u
k + A>2 v

k).

(3.17)

The second case is when β > 0, θ = β and ρ = γ, then equations (3.16) become the

following equations


u = proxα1f∗1

(uk + α1A1(xk − β(A>1 u
k + A>2 v)))

v = proxα2f∗2
(vk + α2A2(xk − β(A>1 u+ A>2 v

k)))

x = xk − γ(A>1 u+ A>2 v).

(3.18)

Next, we construct a contractive mapping for solving equations (3.16). In equations

(3.16), the variable x can be computed explicitly after the newest updates of u and v, but

the variable u and v have to be compute iteratively. So we formulate a contractive mapping

from the first two equations to solve u and v.

By substituting the first equation into the variable u in the second equation, we obtain
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the following fixed point equation in terms of only one variable v

v = proxα2f∗2
(−α2θA2A

>
1 proxα1f∗1

(−α1θA1A
>
2 v + ũk) + ṽk),

where

ũk = uk + α1A1(xk − βA>1 uk − (β − θ)A>2 vk),

ṽk = vk + α2A2(xk − βA>2 vk − (β − θ)A>1 uk).

This implicit equation, for any given vector xk, uk and vk, can be viewed as a fixed point

equation v = T (v) where T : Rm2 → Rm2 is defined as

T (v) = proxα2f∗2
(−α2θA2A

>
1 proxα1f∗1

(−α1θA1A
>
2 v + ũk) + ṽ2

k). (3.19)

If α1α2θ
2‖A1‖2

2‖A2‖2
2 < 1, then the operator T is a contractive mapping and there exists an

iterative sequence that converges to the unique solution of the fixed point problem.

Finally, the implicit fixed-point proximity algorithm with the matrix M defined as (3.15)

is presented as follows.
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Algorithm 3 Implicit Fixed-point Proximity Algorithm for problem (P3)

1: Choose w0 ∈ Rm1+m2+n, λk ∈ [0, 1]

2: for k from 1 to K do

3: Compute LM(wk) via the inner loop:

4: Set l = 0, choose vk+1
0 ∈ Rm2

5: repeat . Inner steps

6: uk+1
l+1 = proxα1f∗1

(uk + α1A1(xk − θA>2 (vk+1
l − vk)− β(A>1 u

k + A>2 v
k)))

7: vk+1
l+1 = proxα2f∗2

(vk + α2A2(xk − θA>1 (uk+1
l+1 − uk)− β(A>1 u

k + A>2 v
k)))

8: l← l + 1

9: until stopping criterion is satisfied

10: xk+1
∞ = xk − ρ(A>1 u

k+1
∞ + A>2 v

k+1
∞ ) + (ρ− γ)(A>1 u

k + A>2 v
k)

. uk+1
∞ and vk+1

∞ are the outputs from the inner loop

11: LM(wk) = wk+1
∞

12: wk+1 = wk + λk(LM(wk)− wk)

13: end for

In order to ensure that the proposed LM with a fully implicit expression satisfies Property

1 and Property 2 under the implicit fixed-point proximity framework, Algorithm 2 needs to

satisfy the following assumption.

Assumption (A3.1) α1α2θ
2‖A1‖2

2‖A2‖2
2 < 1.

In order to ensure that LM satisfies Property 3, Algorithm 3 needs to satisfy one of the

following assumptions.

Assumption (A3.2) β = 0, ρ = 2γ, and γ

∥∥∥∥[√α1A1
√
α2A2

]∥∥∥∥2

2

< 1;
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Assumption (A3.3) β > 0, ρ = γ, θ = β, α1β‖A1‖2
2 < 1, α2β‖A2‖2

2 < 1, and γ ∈ (0, 2β].

3.2.4 Convergence analysis

In the following, we illustrate that Assumption (A3.1) can guarantee that the operator

LM with the choice of M defined as (3.15) satisfies Property 1 and Property 2, and that As-

sumption (A3.2) or Assumption (A3.3) can guarantee that LM satisfies Property 3, resulting

in the convergence of Algorithm 3.

(i) Property 1 and Property 2

Assumption (A3.1) yields that the operator T defined as (3.19) is a contractive mapping,

so the operator LM corresponding to Algorithm 3 satisfies Property 1 and Property 2 as

shown in the following proposition.

Proposition 3.6 Let M be a matrix defined as (3.15). Suppose that α1α2θ
2‖A1‖2

2‖A2‖2
2 <

1. Then LM is an M -operator associated with proxF,R ◦ E. Furthermore, for any wk =[
uk
>

vk
>

xk
>
]>
∈ Rm1+m2+n, the sequence {wk+1

l }l, generated by the 6th-7th line and

the 10th line in Algorithm 3, that is


uk+1
l+1 = proxα1f∗1

(uk + α1A1(xk − θA>2 (vk+1
l − vk)− β(A>1 u

k + A>2 v
k)))

vk+1
l+1 = proxα2f∗2

(vk + α2A2(xk − θA>1 (uk+1
l+1 − uk)− β(A>1 u

k + A>2 v
k)))

xk+1
l+1 = xk − ρ(A>1 u

k+1
l+1 + A>2 v

k+1
l+1 ) + (ρ− γ)(A>1 u

k + A>2 v
k),

(3.20)

converges to LM(wk), given any initial vector vk+1
0 ∈ Rm2 .

Proof. Let T be the operator defined as (3.19). Suppose that α1α2θ
2‖A1‖2

2‖A2‖2
2 < 1. Since

proxα1f∗1
and proxα2f∗2

are firmly nonexpansive with respect to the standard `2 norm, then the

operator T is contractive for any vector uk, vk and xk. Thus, it follows from Theorem 2.10

that the fixed point of T is unique and that LM is an M -operator. Moreover, the sequence
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{wk+1
l }l, generated by equations (3.20), converges to the unique solution LM(wk).

(ii) Property 3 when β = 0

In the case when β = 0, Property 3 can be verified by applying Proposition 2.14. The two

assumptions required in Proposition 2.14 are R(E − I) is skew-symmetric and R(E −M) ∈

Sm1+m2+n
+ .

If β = 0, then the matrix R(E − I) is skew-symmetric as shown below

R(E − I) =


A1

A2

−A>1 −A>2

 .

Lemma 3.7 Let M be defined as (3.15) with β = 0. Then the matrix

R(E −M) =


1
α1
I A1

1
α2
I A2

( ρ
γ
− 1)A>1 ( ρ

γ
− 1)A>2

1
γ
I

 ∈ Sm1+m2+n
+

if and only if ρ = 2γ and γ

∥∥∥∥[√α1A1
√
α2A2

]∥∥∥∥2

2

< 1.

Proof. It follows from Lemma 2.15 that R(E −M) ∈ Sm1+m2+n
+ if and only if ρ = 2γ and

1
γ
In − α1A

>
1 A1 − α2A

>
2 A2 ∈ Sn+.

It follows from the results above and Proposition 2.14 that Assumption (A3.2) implies

that the operator LM is firmly nonexpansive with respect to R(E−M) and satisfies Property

3. As a result, we have the following convergence result for Algorithm 3 with M defined as

(3.15) for the case when β = 0.

Theorem 3.8 Assume that Fix (proxF,R ◦ E) 6= ∅. Let M be defined as (3.15), and let
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λk ∈ [0, 2] such that
∑

k λk(2−λk) = +∞. Then the sequence {wk}, generated by Algorithm

3, converges to a solution of problem (P3) if Assumption (A3.1) and (A3.2) are satisfied,

and the errors from inner iterations are summable.

Proof. The result immediately follows from Proposition 3.6, Lemma 3.7, Proposition 2.14

and Theorem 2.20.

(iii) Property 3 when β > 0

In the case when β > 0, Property 3 cannot be verified by Proposition 2.14, because

R(E − I) is no longer skew-symmetric as shown below

R(E − I) =


−βA1A

>
1 −βA1A

>
2 A1

−βA2A
>
1 −βA2A

>
2 A2

−A>1 −A>2

 .

So we have to use the definition of nonexpansive operators in Definition 2.2 to show Property

3, which is that LM is nonexpansive.

In the following, we prove that Assumption (A3.3) implies that LM is nonexpansive.

First, we assume β > 0 and ρ = γ as in Assumption (A3.3). Let

wi =


ui

vi

xi

 ∈ Rm1+m2+n and w∗i =


u∗i

v∗i

x∗i

 ∈ Rm1+m2+n, (3.21)

i = 1, 2, such that w2 = LM(w1) and w∗2 = LM(w∗1).

By applying Lemma 2.13, we obtain the following inequality

〈w2 − w∗2, R(I −M)(w2 − w∗2)〉 ≤ 〈w2 − w∗2, R(E −M)(w1 − w∗1)〉, (3.22)
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where

R(I −M) =


1
α1
Im1 θA1A

>
2 0

θA2A
>
1

1
α2
Im2 0

A>1 A>2
1
γ
In


and

R(E −M) =


1
α1
Im1 − βA1A

>
1 −(β − θ)A1A

>
2 A1

−(β − θ)A2A
>
1

1
α2
Im2 − βA2A

>
2 A2

0 0 1
γ
In

 .

Due to the fact that R(E − I) is not skew-symmetric, it is impossible to reformulate the

matrix R(I −M) on the left-hand side of inequality (3.22) to be the same as the matrix

R(E −M) on the right-hand side. Then Proposition 2.14 is not applicable to the case with

β > 0 and the operator LM in this case may not be firmly nonexpansive. However, we can

prove a weaker property than the firmly nonexpansive property, which is that the operator

LM is nonexpansive. The nonexpansive property is exactly Property 3 required under the

implicit fixed-point proximity framework, and it is sufficient to yield the convergence of the

proposed algorithm.

Next, we rewrite the inequality (3.22) by clearing all the off-diagonal matrix blocks in

R(I −M) and R(E −M) gradually with the help of the following relations.

Lemma 3.9 Suppose that M is defined as (3.15) with β > 0 and ρ = γ, and that LM is

an M -operator with proxF,R ◦ E. Let wi and w∗i be defined as (3.21), i = 1, 2, such that

w2 = LM(w1) and w∗2 = LM(w∗1). Then

x1 − x∗1 = x2 − x∗2 + γ(A>1 (u2 − u∗2) + A>2 (v2 − v∗2)). (3.23)
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Proof. It is derived from the third equation of equations (3.16) by setting ρ = γ that

x2 = x1 − γ(A>1 u2 + A>2 v2)

and

x∗2 = x∗1 − γ(A>1 u
∗
2 + A>2 v

∗
2).

Then equation (3.23) is immediately achieved by subtracting the second equation from the

first equation.

To rewrite the inequality (3.22), we start with clearing the matrix blocks with A1 or A2

in R(E −M) on the right-hand side and the matrix blocks with A>1 or A>2 in R(I −M) on

the left-hand side. Then we obtain a new inequality as shown in the following lemma.

Lemma 3.10 Suppose that M is defined as (3.15) with β > 0 and ρ = γ, and that LM

is an M -operator associated with proxF,R ◦ E. Let wi and w∗i be defined as (3.21), i = 1, 2,

such that w2 = LM(w1) and w∗2 = LM(w∗1). Then we have

〈w2 − w∗2, G1(w2 − w∗2)〉 ≤ 〈w2 − w∗2, G2(w1 − w∗1)〉, (3.24)

where

G1 =


1
α1
Im2 − γA1A

>
1 (θ − γ)A1A

>
2 0

(θ − γ)A2A
>
1

1
α2
Im2 − γA2A

>
2 0

0 0 1
γ
In


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and

G2 =


1
α1
Im1 − βA1A

>
1 −(β − θ)A1A

>
2 0

−(β − θ)A2A
>
1

1
α2
Im2 − βA2A

>
2 0

0 0 1
γ
In

 .

Proof. According to the right-hand side of the inequality (3.22), the inner product associated

with the matrix blocks with A1 or A2 in R(E −M) is

〈w2 − w∗2, [A>1 A>2 0]
>

[0 0 In](w1 − w∗1)〉

=〈u2 − u∗2, A1(x1 − x∗1)〉+ 〈v2 − v∗2, A2(x1 − x∗1)〉

=〈A>1 (u2 − u∗2) + A>2 (v2 − v∗2), x1 − x∗1〉.

By substituting equation (3.23) into the inner product, we have

〈A>1 (u2 − u∗2) + A>2 (v2 − v∗2), x1 − x∗1〉

=〈A>1 (u2 − u∗2) + A>2 (v2 − v∗2), x2 − x∗2〉

+ γ〈A>1 (u2 − u∗2) + A>2 (v2 − v∗2), A>1 (u2 − u∗2) + A>2 (v2 − v∗2)〉

=〈w2 − w∗2, [A>1 A>2 0]
>

[0 0 In](w2 − w∗2)〉

+ γ〈w2 − w∗2, [A>1 A>2 0]
>

[A>1 A>2 0](w2 − w∗2)〉.

Then the inequality can be written as inequality (3.24) with

R(E −M)− [A>1 A>2 0]
>

[0 0 In] = G2

and

R(I −M)− [A>1 A>2 0]
>

[0 0 In]− γ[A>1 A>2 0]
>

[A>1 A>2 0] = G1.
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We continue to clear the off-diagonal matrix blocks of G1 and G2 by using the following

lemmas.

Lemma 3.11 Let u ∈ Rm1 , v ∈ Rm2 , A1 ∈ Rm1×n and A2 ∈ Rm2×n. Then

2〈A>2 v,A>1 u〉 = ‖A>1 u+ A>2 v‖2
2 − ‖A>1 u‖2

2 − ‖A>2 v‖2
2.

Lemma 3.12 Let w ∈ Rd, w′ ∈ Rd, and A ∈ Sd+. Then

2〈w,Aw′〉 = 〈w,Aw〉+ 〈w′, Aw′〉 − 〈w − w′, A(w − w′)〉.

The resulting inequality with block diagonal matrices is shown in the following proposi-

tion. We denote diag(D1, . . . , Dn) as a block diagonal matrix whose diagonal blocks starting

in the upper left corner are square matrices D1, . . . , Dn.

Proposition 3.13 Suppose that M is defined as (3.15) with β > 0 and ρ = γ, and that LM

is an M -operator associated with proxF,R ◦ E. Let wi and w∗i be defined as (3.21), i = 1, 2,

such that w2 = LM(w1) and w∗2 = LM(w∗1). If 1
α1
Im1 − βA1A

>
1 ∈ Sm1

+ and 1
α2
Im2 − βA2A

>
2 ∈

Sm2
+ , then we have

〈w2 − w∗2, H1(w2 − w∗2)〉 ≤〈w1 − w∗1, H1(w1 − w∗1)〉

− 〈(v2 − v∗2)− (v1 − v∗1), H2((v2 − v∗2)− (v1 − v∗1))〉

− (β − θ)‖A>1 (u1 − u∗1) + A>2 (v2 − v∗2)‖2
2

− (β − θ)‖A>1 (u2 − u∗2) + A>2 (v1 − v∗1)‖2
2

− (2θ − γ)‖A>1 (u2 − u∗2) + A>2 (v2 − v∗2)‖2
2,

(3.25)

where

H1 = diag

(
1

α1

Im1 − θA1A
>
1 ,

1

α2

Im2 − θA2A
>
2 ,

1

γ
In

)
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and

H2 = diag

(
1

α1

Im1 − βA1A
>
1 ,

1

α2

Im2 − βA2A
>
2 , 0

)
.

Proof. We aim to reformulate the following inequality into the inequality (3.25)

2〈w2 − w∗2, G1(w2 − w∗2)〉 ≤ 2〈w2 − w∗2, G2(w1 − w∗1)〉. (3.26)

First, we consider the inner product on the right-hand side of the inequality (3.26). It

can be written as a sum of inner products associated with the matrix blocks in G2

2〈w2 − w∗2, G2(w1 − w∗1)〉

=2〈u2 − u∗2, ( 1
α1
Im1 − βA1A

>
1 )(u1 − u∗1)〉+ 2〈v2 − v∗2, ( 1

α2
Im2 − βA2A

>
2 )(v1 − v∗1)〉

− 2(β − θ)〈u2 − u∗2, A1A
>
2 (v1 − v∗1)〉 − 2(β − θ)〈v2 − v∗2, A2A

>
1 (u1 − u∗1)〉

+ 2
γ
〈x2 − x∗2, x1 − x∗1〉.

Next, we rewrite each of the inner products. By applying Lemma 3.12, if 1
α1
Im1−βA1A

>
1 ∈

Sm1
+ and 1

α2
Im2 − βA2A

>
2 ∈ Sm2

+ , then we have

2〈u2 − u∗2, ( 1
α1
Im1 − βA1A

>
1 )(u1 − u∗1)〉

=〈u2 − u∗2, ( 1
α1
Im1 − βA1A

>
1 )(u2 − u∗2)〉+ 〈u1 − u∗1, ( 1

α1
Im1 − βA1A

>
1 )(u1 − u∗1)〉

− 〈(u2 − u∗2)− (u1 − u∗1), ( 1
α1
Im1 − βA1A

>
1 )[(u2 − u∗2)− (u1 − u∗1)]〉
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and

2〈v2 − v∗2, ( 1
α2
Im2 − βA2A

>
2 )(v1 − v∗1)〉

=〈v2 − v∗2, ( 1
α2
Im2 − βA2A

>
2 )(v2 − v∗2)〉+ 〈v1 − v∗1, ( 1

α2
Im2 − βA2A

>
2 )(v1 − v∗1)〉

− 〈(v2 − v∗2)− (v1 − v∗1), ( 1
α2
Im2 − βA2A

>
2 )[(v2 − v∗2)− (v1 − v∗1)]〉.

By applying Lemma 3.11, we have

− 2(β − θ)〈u2 − u∗2, A1A
>
2 (v1 − v∗1)〉

=(β − θ)‖A>1 (u2 − u∗2)‖2
2 + (β − θ)‖A>2 (v1 − v∗1)‖2

2 − (β − θ)‖A>1 (u2 − u∗2) + A>2 (v1 − v∗1)‖2
2

and

− 2(β − θ)〈v2 − v∗2, A2A
>
1 (u1 − u∗1)〉

=(β − θ)‖A>1 (u1 − u∗1)‖2
2 + (β − θ)‖A>2 (v2 − v∗2)‖2

2 − (β − θ)‖A>1 (u1 − u∗1) + A>2 (v2 − v∗2)‖2
2.

By applying Lemma 3.12 and then equation (3.23), we have

2
γ
〈x2 − x∗2, x1 − x∗1〉

= 1
γ
‖x2 − x∗2‖2

2 + 1
γ
‖x1 − x∗1‖2

2 − 1
γ
‖(x2 − x∗2)− (x1 − x∗1)‖2

2

= 1
γ
‖x2 − x∗‖2

2 + 1
γ
‖x1 − x∗‖2

2 − γ‖A>1 (u2 − u∗2) + A>2 (v2 − v∗2)‖2
2.

Second, we consider the inner product on the left-hand side of the inequality (3.26). It
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can be written as a sum of inner products associated with the matrix blocks in G1.

2〈w2 − w∗2, G1(w2 − w∗2)〉

=2〈u2 − u∗2, ( 1
α1
Im1 − γA1A

>
1 )(u2 − u∗2)〉+ 2〈v2 − v∗2, ( 1

α2
Im2 − γA2A

>
2 )(v2 − v∗2)〉

+ 4(θ − γ)〈u2 − u∗2, A1A
>
2 (v2 − v∗2)〉+ 2

γ
‖x2 − x∗2‖2

2.

By applying Lemma 3.11, we have

4(θ − γ)〈u2 − u∗2, A1A
>
2 (v2 − v∗2)〉

=2(θ − γ)‖A>1 (u2 − u∗2) + A>2 (v2 − v∗2)‖2
2 − 2(θ − γ)‖A>1 (u2 − u∗2)‖2

2 − 2(θ − γ)‖A>2 (v2 − v∗2)‖2
2.

Lastly, we combine all the inner products to reformulate the inequality, and obtain equa-

tion (3.25).

Our goal is to ensure that LM is nonexpansive. And this can be achieved by setting

H1 ∈ Sm1+m2+n
+ , H2 ∈ Sm1+m2+n, β−θ ≥ 0 and 2θ−γ ≥ 0, in addition to the assumptions in

Proposition 3.13. In summery, the constraints are α1θ‖A1‖2
2 < 1, α2θ‖A2‖2

2 < 1, α1β‖A1‖2
2 <

1, α2β‖A2‖2
2 < 1, γ ∈ (0, 2θ] and θ ≤ β. In particular, Assumption (A3.3) can imply those

constraints and yield that LM is nonexpansive.

Corollary 3.14 Suppose that M is defined as (3.15) and that LM is an M -operator as-

sociated with proxF,R ◦ E. If Assumption (A3.3) is satisfied, then LM is nonexpansive with

respect to H3 ∈ Sm1+m2+n
+ where

H3 = Diag

(
1

α1

Im1 − βA1A
>
1 ,

1

α2

Im2 − βA2A
>
2 ,

1

γ
In

)
.

Property 3 of the operator LM is verified by Corollary 3.14, and then the convergence of

Algorithm 3 for the case when β > 0 is guaranteed as shown in the following theorem.
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Theorem 3.15 Assume that Fix (proxF,R ◦ E) 6= ∅. Let M be defined as (3.15), and let

λk ∈ [0, 1] such that
∑

k λk(1−λk) = +∞. Then the sequence {wk}, generated by Algorithm

3, converges to a solution of problem (P3) if Assumption (A3.1) and (A3.3) are satisfied,

and the errors from inner iterations are summable.

Proof. The result immediately follows from Proposition 3.6, Corollary 3.14 and Theorem

2.20.

3.3 Other Examples

After exploring the optimization problems with two terms, we are interesting in devel-

oping implicit algorithms for optimization problems with three or more terms such as the

following models,

min
x∈Rn

f1(x) + g1(A1x) + g2(A2x) (P4)

and

min
x∈Rn

f1(x) + f2(x) + g1(A1x), (P5)

where Ai is an mi × n matrix, and fi : Rn → (−∞,+∞] and gi : Rmi → (−∞,+∞] is

proper, lower semi-continuous, and convex, i = 1, 2.

The optimization problems with three or more terms have many applications in image

reconstruction and statistics. For example, the `1 regularized fused lasso [79] and the MR

image reconstruction model (M5) mentioned in Chapter 1, if Φ is invertible, have the form

of problem (P4); the CT reconstruction model [53] has the form of problem (P5).

3.3.1 Fixed point characterization

Both problem (P4) and problem (P5) can be viewed as a special case of problem (P2)

and their solutions can be characterized as the solutions of a system of three fixed point
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equations.

In the following, we will use problem (P4) as an example to illustrate the procedure

of developing implicit algorithms. This procedure can be adapted accordingly for problem

(P5).

By applying Proposition 3.1, the solutions of problem (P4) can be characterized as the

solutions of the following system of fixed point equations.


u = proxα1g∗1

(u+ α1A1x)

v = proxα2g∗2
(v + α2A2x)

x = proxβf1(x− β(A>1 u+ A>2 v)),

(3.27)

where α1 > 0, α2 > 0 and β > 0.

Note that for problem (P4) we do not consider another equivalent variant of equations

(3.27). Because the third equation with the proximity operator of f1 may not be linear. If

we substitute the third equation with x into other equations, then the resulting equivalent

variant cannot be written as the unified fixed point equation (2.12), and therefore we cannot

continue to develop fixed-point proximity algorithms.

Instead, we consider the system of fixed point equations (3.27) directly. Under the

implicit fixed-point proximity framework, the system is written as the unified fixed point

equation (2.12) with F : Rm1+m2+n → R defined by F (w) = g∗1(u) + g∗2(v) + f1(x), R =

diag
(

1
α1
Im1 ,

1
α2
Im2 ,

1
β
In

)
, α1 > 0, α2 > 0, β > 0, and

w =


u

v

x

 ∈ Rm1+m2+n and E =


Im1 α1A1

Im2 α2A2

−βA>1 −βA>2 In

 ∈ R(m1+m2+n)×(m1+m2+n).

(3.28)

Then a fixed-point proximity algorithm, developed from this unified fixed point equation,
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generates a sequence {wk} that follows equation (2.17) with function F and matrices E and

R defined as above.

3.3.2 Implicit fixed-point proximity algorithms

To develop implicit fixed-point proximity algorithms for problem (P4), we have two

possible block structures for the 3× 3 block matrix M .

The first block structure is the structure with skew diagonal blocks defined as follows

M1 =


0 0 (−1− θ)α1A

>
1

0 0 (−1− θ)α2A
>
2

(1− θ)βA1 (1− θ)βA2 0

 (3.29)

and R(E −M1) is computed as follows

R(E −M1) =


1
α1
Im1 0 θA>1

0 1
α2
Im2 θA>2

θA1 θA2
1
β
In

 .

The corresponding implicit algorithm is similar to Algorithm 2, and has the following con-

vergence assumptions.

Assumption (A4.1) β |1− θ2|
∥∥∥∥[A1 A2

]∥∥∥∥
2

∥∥∥∥[α1A1 α2A2

]∥∥∥∥
2

< 1

Assumption (A4.2) βθ2

∥∥∥∥[√α1A1
√
α2A2

]∥∥∥∥
2

< 1

These two assumptions are corresponding to the three assumptions in Algorithm 2. As-

sumption (A2.1) in Algorithm 2 can be interpreted as Assumption (A4.1); Assumption (A2.2)

is already satisfied; and Assumption (A2.3) can be interpreted as Assumption (A4.2). Thus,

the proposed implicit fixed-point proximity algorithm converges if Assumption (A4.1) and

(A4.2) are satisfied.
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The second block structure defined as follows has the same structure as the matrix M

(3.15) in Example 2,

M2 =


0 −α1θA1A

>
2 0

−α2θA2A
>
1 0 0

−2βA>1 −2βA>2 0

 , (3.30)

where θ > 0 and R(E −M2) is computed as follows

R(E −M2) =


1
α1
Im1 θA1A

>
2 A>1

θA2A
>
1

1
α2
Im2 A>2

A>1 A>2
1
β
In

 .

The corresponding implicit algorithm is similar to Algorithm 3 when β = 0, and has the

following convergence assumptions.

Assumption (A4.3) α1α2θ
2‖A1‖2

2‖A2‖2
2 < 1

Assumption (A4.4) θ = β, α1β‖A1‖2
2 < 1 and α2β‖A1‖2

2 < 1

These two assumptions are corresponding to the two assumptions in Algorithm 3 with

β = 0. Assumption (A3.1) in Algorithm 3 can be interpreted as Assumption (A4.3), and

Assumption (A3.2) can be interpreted as Assumption (A4.4). Thus, the proposed implicit

fixed-point proximity algorithm converges if Assumption (A4.3) and (A4.4) are satisfied.

Note that we only present the procedure of proposing implicit fixed-point proximity

algorithms for problem (P4) and will not conduct numerical experiments to demonstrate the

performance. Because those algorithms have similar algorithmic structures of the proposed

algorithms in Example 1 and Example 2, as well as similar practical performance.



Chapter 4

Applications in Image Processing and

Numerical Experiments

In this chapter, we apply the proposed fixed-point proximity algorithms to applications

in image processing and test those implicit algorithms on four image reconstruction models.

Two total variation based denoising models have the form of problem (P2) and two total

variation based deblurring models have the form of problem (P3). The numerical exper-

iment results demonstrate the performance of the proposed implicit fixed-point proximity

algorithms in comparison with other existing explicit fixed-point proximity algorithms.

All algorithms were implemented in Matlab 2017a and executed on an Intel Core i5 CPU

at 2.9 GHz, 8G RAM, running a 64 Bit Window 10 system.

4.1 Applications in Image Processing

The image reconstruction models aim to recover the underlying image from the observed

and possibly degraded image, and those models can be identified as problem (P0), which

minimizes a sum of convex functions composed with or without linear operators.

80
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4.1.1 Image reconstruction models

Suppose z ∈ Rm represents the observed image degraded by blur or/and noise and x ∈ Rn

represents the desired image to be constructed. The relationship between the observed image

z and the original image x can be modeled as follows

z = Kx+ η,

where K ∈ Rm×n represents the measurement process, and η ∈ Rm represents the unknown

additive noise. The matrix K varies in different image reconstruction problems. In denoising

problems, K is the identity matrix; in deblurring problems, K represents the convolving

process with a blurring kernel; and in compressed sensing, K represents the sparse sampling

process. For the noise vector η, two types of noise, namely, Gaussian noise and impulsive

noise, will be tested.

Depending on the matrix K and the noise η, there are various image construction models

designed to recover the image x as introduced at the beginning of Chapter 1. An image con-

struction model usually consists of one data fidelity term and at least one regularization term.

In this dissertation, we mainly focus on the image reconstruction models with total variation

regularization. Next, we introduce the formulation of the total variation regularization.

4.1.2 Total variation regularization

The total variation semi-norm measures the total variation between nearby pixels in an

image and the sharp edges of the image can be preserved by minimizing its total variation.

Suppose that x ∈ Rn is an image vector of a square image with size
√
n ×
√
n. Then

the TV semi-norm of x, which measures the total variation of image pixels, is formulated as

follows.

‖x‖TV = ψ(Dx),
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where ψ : R2n → R is defined by

ψ(y) =
n∑
i=1

∥∥∥∥[yi yn+i]
>
∥∥∥∥

2

(4.1)

and D ∈ R2n×n is a first order difference matrix defined as follows in terms of the kronecker

product operator ⊗

D =

Id ⊗Dd

Dd ⊗ Id

 (4.2)

with d =
√
n. Here Dd is a d× d matrix given in the following

Dd =



−1 1

. . . . . .

−1 1

0


.

We know that ‖D‖2 ≤
√

8.

Now, we are ready to apply the proposed implicit fixed-point proximity algorithms to

the total variation based image reconstruction models and demonstrate the performance of

those implicit algorithms.

4.2 Application of Example 1: Total Variation Based

Denoising Models

In this section, we consider two total variation based denoising models. They are the

ROF model defined as model (M1) and the L1-TV denoising model defined as model (M2).

Both models have the form of problem (P2) where f1 is corresponding to the data fidelity

term, and f2 ◦ B = ψ ◦ D = ‖ · ‖TV is corresponding to the total variation regularization
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term.

min
x∈Rn

f1(x) + ψ(Dx).

To remove Gaussian noise, we choose f1 = λ
2
‖ · −z‖2

2, and the resulting optimization

problem refers to as the ROF model. To remove impulsive noise, we choose f1 = λ‖ · −z‖1,

the resulting optimization problem refers to as the L1-TV denoising model.

Before we apply Algorithm 2 to the total variation based denoising models, we present

the parameter settings for three algorithms: fixed point algorithm based on the proximity

operator for ROF model (FP) as (2.23), primal dual algorithm (PD) as (2.21), and implicit

fixed-point proximity algorithm (IM) as Algorithm 2.

4.2.1 Parameter settings

For performance evaluations, we use the following fixed point proximity algorithms and

parameter settings.

• FP: fixed point algorithm based on the proximity operator for ROF model as (2.23),

with

M =

 I 0

βD 0

, α = 1, and β‖D‖2
2 = 1.999.

• PD: primal dual algorithm as (2.21), with

M =

 0 0

2βD 0

, α = 0.01, and αβ‖D‖2
2 = 0.999.

• IM: implicit fixed-point proximity algorithm as Algorithm 2, with

M =

 0 (−1− θ)αD>

(1− θ)βD 0

, α = 0.01, αβ‖D‖2
2 = 1.999, θ = 1√

2
, λk = 1,

xk+1
0 = 0.5xk + 0.5xk−1, and 1 iteration in the inner loop.

In particular, we need the proximity operators of f1 and f ∗2 which have closed forms as below.
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• proxαλ
2
‖·−z‖22

(x) = αλ
αλ+1

z + 1
αλ+1

x

• x̃ = proxαλ‖·−z‖1(x), where x̃i = zi + max
{

0, 1− αλ
|xi−zi|

}
(xi − zi)

• ỹ = proxβψ∗(y), where [ỹi, ỹn+i]
> = [yi,yn+i]

>

max{‖[yi,yn+i]>‖2,1}

• ỹ = proxβ( 1
λ
ψ)∗(y), where [ỹi, ỹn+i]

> = [yi,yn+i]
>

max{λ‖[yi,yn+i]>‖2,1}

4.2.2 ROF model

The image of “Girl” of size 256× 256 in Figure 4.1(a) is used in our test. This image is

contaminated by the additive zero-mean Gaussian noise with standard deviation of σ = 0.05

(see Figure 4.1(b)). The ROF model with regularization parameter of λ = 16 is used to

remove this noise.

In the ROF model, f1 = λ
2
‖ · −z‖2

2 is a strongly convex function, which implies that the

solution of ROF is unique. So we use the following error measure to evaluate the performance

of an algorithm

ε = ‖xk − x∗‖2,

where x∗ (see Figure 4.1(c)) is the reference solution generated by running primal dual

algorithm for 100,000 iterations, and xk is the k-th iteration from the algorithm.
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(a) Original image

(b) Noisy image with σ = 0.05 (c) Reference solution with λ = 16

Figure 4.1: ROF image denoising model

Figure 4.2 depicts the errors of the solutions obtained by three testing algorithms (PD,

FP, and IM) against the CPU time consumption. We can see that IM converges faster than

PD and FP for the ROF model.
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Figure 4.2: Performance evaluations of primal dual algorithm (PD), fixed point algorithm
based on the proximity operator for ROF model (FP) and implicit fixed-point proximity
algorithm as Algorithm 2 (IM)

To further evaluate our algorithm, four different levels of noise are added to the test

image “Girl” and two different error tolerances are tested. In our experiments, the parameter

settings remain the same as above. Table 4.1 illustrates the number of iterations and CPU

time needed to achieve the error tolerance. “-” indicates the algorithm did not achieve the

error tolerance within 5000 iterations. We observe that IM performs better than FD and

PD in terms of computational time.
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ε = 10−2 ε = 10−3

σ = 0.05 FP 1422 (4.57 s) -

λ = 16 PD 457 (1.20 s) 3723 (9.72 s)

IM 229 (0.70 s) 1865 (5.68 s)

σ = 0.08 FP 1351 (4.60 s) -

λ = 14 PD 376 (1.00 s) 3166 (8.43 s)

IM 188 (0.60 s) 1587 (5.08 s)

σ = 0.1 FP 2442 (8.18 s) -

λ = 10 PD 486 (1.25 s) 4015 (10.31 s)

IM 240 (0.73 s) 2010 (6.11 s)

σ = 0.15 FP 3561 (11.34 s) -

λ = 7 PD 500 (1.28 s) 4970 (12.67 s)

IM 249 (0.77 s) 2464 (7.56 s)

Table 4.1: Comparison between three fixed point proximity algorithms

4.2.3 L1-TV model

The image of “Boat” of size 512 × 512 in Figure 4.3(a) is used in our test. This image

is contaminated by the additive impulsive noise with noise density of d = 0.2 (see Fig-

ure 4.3(b)). The L1-TV denoising model with regularization parameter of λ = 1.05 is used

to remove this noise.

In the L1-TV model, f1 = λ‖ · −z‖1 is not a strongly convex function, which means the

solution of L1-TV may not be unique. So we use the following error measure to evaluate the

performance of an algorithm

ε =
E(xk)− E(x∗)

E(x∗)
, (4.3)

where x∗ (see Figure 4.3(c)) is the reference solution generated by running primal dual

algorithm for 50,000 iterations and E(·) is the objective function (or called energy function)

of the L1-TV model.
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(a) Original image

(b) Noisy image with d = 0.2 (c) Reference solution with λ = 1.05

Figure 4.3: L1-TV image denoising model

Figure 4.4 depicts the errors of the solutions obtained by PD and IM against the CPU

time consumption. We can see that IM converges faster than PD for the L1-TV model. Note

that the fixed point algorithm based on the proximity operator for ROF model (FP) is not

applicable to L1-TV model.
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Figure 4.4: Performance evaluations of primal dual algorithm (PD) and implicit fixed-point
proximity algorithm as Algorithm 2 (IM)

To further evaluate our algorithm, four different levels of noise are added to the test image

“Boat” and two different error tolerances are tested. In our experiments, the parameter

settings remain the same as above. Table 4.2 illustrates the number of iterations and CPU

time needed to achieve the error tolerance. Again, we observe that IM performs better than

PD in terms of computational time.

ε = 10−5 ε = 10−6

σ = 0.1 PD 454 (9.84 s) 1491 (32.31 s)

λ = 1.2 IM 307 (7.62 s) 793 (19.69 s)

σ = 0.15 PD 504 (10.67 s) 1721 (37.09 s)

λ = 1.08 IM 338 (8.35 s) 904 (22.34 s)

σ = 0.2 PD 493 (10.68 s) 1721 (37.27 s)

λ = 1.05 IM 333 (8.26 s) 903 (22.44 s)

σ = 0.25 PD 492 (10.68 s) 1661 (36.02 s)

λ = 1.03 IM 352 (8.74 s) 896 (22.26 s)

Table 4.2: Comparision between two fixed-point proximity algorithms



90

4.2.4 Sensitivity of parameter settings

Algorithm 2 as an implicit fixed-point proximity algorithm is computed in a double-loop

fashion. In the inner loop, we perform contractive mappings to compute LM(wk). In the

outer loop, we utilize the outcome LM(wk) from the inner loop to compute the next step

wk+1. So the performance of Algorithm 2 is related to the performance of the inner loop and

the parameters in the outer loop.

Next, we discuss the sensitivity of parameter settings in Algorithm 2 from the aspects of

the inner loop and the outer loop.

(i) Parameter settings in the inner loop

As shown in Proposition 2.12, the performance of the inner loop via contractive mappings

depends on three factors: the initial vector of the inner sequence, the number of inner

iterations and the contraction constant. In particular, the inner sequence in Algorithm 2

should converge fast to the solution LM(wk) if the initial vector xk+1
0 is close to the solution,

the number of inner iterations is large, and the contraction constant ‖M1‖2‖M2‖2 is small.

• The initial vector and the number of inner iterations

We test the sensitivity of the algorithm to the initial vector and the number of inner

iterations on the ROF model for the “Girl” image with noise level of σ = 0.05. In this

experiment, we use the same parameter settings as mentioned in Section 4.2.1, except for the

initial vector and the number of inner iterations. In order to let the initial vector get closer to

the solution, we set xk+1
0 to be a combination of xk and xk−1, i.e., xk+1

0 = ρkx
k+(1−ρk)xk−1,

where ρk ∈ R. Then we test the sensitivity of the algorithm to the parameter ρk as well as

the number of inner iterations.
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Figure 4.5: Sensitivity of ρk and the number of iterations (Inn#) in the inner loop

Note that there are only two curve patterns in Figure 4.5. The upper red curve represents

the case when ρk = −0.5 and the number of inner iteration is 1, while the lower curve with

overlapping colors represents all other cases.

It is demonstrated in Figure 4.5 that the performance of Algorithm 2 is not sensitive to

the initial vector and the number of iterations in the inner loop as long as they are properly

chosen. If we fix the number of inner iterations to be 1, then the error plots for different

ρk coincide as long as ρk ∈ (0, 1). If we pick the initial vector factor as ρk = −0.5 /∈ (0, 1),

then the performance of the inner loop can still be guaranteed by increasing the number of

inner iterations and there is no significant difference between choosing the number of inner

iterations to be 2 or 10.

Therefore, it is not necessary to solve each inner loop entirely to a numerical precision.

If we choose a proper initial vector factor, ρk ∈ (0, 1), then only one or two inner iterations

are sufficient to achieve solutions with the desired accuracy.

We also obtain similar results for the ROF model applied to the “Girl” image with

different noise levels and the L1-TV model applied to the “Boat” image with different noise

levels.
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• The contraction constant

In Algorithm 2 for image denoising problems, the contraction constant ‖M1‖2‖M2‖2 is

equal to αβ|1 − θ2|‖D‖2
2, which is associated with the choice of θ in the matrix M defined

as (3.5) and the parameters of proximity operators, α and β. According to Proposition

2.22, if the contraction constant is small, then the inner sequence converges fast to the

solution. However, in the parameter settings for denoising models, we choose a relatively

large contraction constant ‖M1‖2‖M2‖2 = 0.999 < 1 and the performance of the inner loop

as demonstrated in Figure 4.5 is still satisfactory if we choose an appropriate initial vector

or increase the number of inner iterations.

(ii) Parameter settings in the outer loops

The performance of the outer loop is relied on the operator LM , and the performance of

the operator LM for Algorithm 2 is related to the parameter θ in the matrix M defined as

(3.5) and the parameters, α and β, in the proximity operators. According to Theorem 3.4, the

parameters α, β and θ should satisfy two conditions: αβθ2‖B‖2
2 < 1 and αβ|1−θ2|‖B‖2

2 < 1.

Next, we test the sensitivity of θ, α and β on the ROF model for the “Girl” image with

noise level of σ = 0, 05. In this experiment, to avoid any possible effect of the inner loop,

we set ρk = 0.5 and 10 iterations in the inner loop. Also, we fix α to be 0.01, and, for

comparison, we choose different θ and β such that αβθ2‖B‖2
2 < 1 and αβ|1− θ2|‖B‖2

2 < 1.
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Figure 4.6: Sensitivity of parameters θ and β

Note that the overlapping blue curve represents the cases where β = 12.5 and θ varies

and the overlapping curve with red and yellow colors represents the cases where |θ| = 1√
2

and β = 25.

As shown in Figure 4.6, we have two observations on the sensitivity of the parameters.

First, if β is fixed, then the performance of the algorithm is not sensitive to θ. For example, if

we fix β = 12.5, then there is no significant difference between the error plots with different θ.

Second, if β varies as θ varies, then the performance improves as β gets larger. Particularly,

in case where |θ| = 1√
2
, β has the largest value and the corresponding algorithm performs

the best. In fact, the largest possible value of the product αβ such that αβθ2‖B‖2
2 < 1 and

αβ|1 − θ2|‖B‖2
2 < 1 is obtain at |θ| = 1√

2
. The resulting convergence constraint becomes

αβ‖B‖2
2 < 2, which provides the widest selection range for α and β. This is a possible reason

why Algorithm 2 outperforms the primal dual algorithm, whose convergence constraint is

αβ‖B‖2
2 < 1.
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4.3 Application of Example 2: Total Variation Based

Deblurring Models

In this section, we consider two total variation based deblurring models. They are the

L2-TV deblurring model defined as model (M3) and the L1-TV deblurring model defined

as model (M4). Both models have the form of problem (P3) where f1 ◦ A1 = f1 ◦ K is

corresponding to the data fidelity term, and f2 ◦ A2 = ψ ◦D = ‖ · ‖TV is corresponding to

the total variation regularization term.

min
x∈Rn

f1(Kx) + ψ(Bx),

where K is the blurring matrix with ‖K‖2 = 1.

In the following experiments, we choose Gaussian blur with space-variant filters [63,

75] instead of space-invariant filters. The convolution with space-invariant filters can be

computed by fast Fourier transforms (FFTs), while the convolution with space-variant filters

is more difficult to compute and cannot be efficiently simplified in the Fourier domain in

general [42,77].

To remove Gaussian noise, we choose f1 = λ
2
‖ · −z‖2

2, and the resulting optimization

problem refers to as the L2-TV deblurring model. To remove impulsive noise, we choose

f1 = λ‖ · −z‖1, and the resulting optimization problem refers to as the L1-TV deblurring

model.

Before we apply Algorithm 3 to the total variation based deblurring models, we present

the parameter settings for three algorithms: fixed-point proximity Gauss-Seidel algorithm

(GS) as (3.13), implicit fixed-point proximity algorithm (IM) as Algorithm 3, and alternating

direction method of multipliers [32] with conjugate gradient method [66] (ADMMCG).
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4.3.1 Parameter settings

For performance evaluation, we use the following fixed point proximity algorithms and

parameter settings.

• GS: fixed-point proximity Gauss-Seidel algorithm as (3.13), with

M =


0 0 0

−α2βA2A
>
1 0 0

−γA>1 −γA>2 0

, β = 0.01, α1β‖K‖2
2 = 0.999, α2β‖B‖2

2 = 0.999,

γ = β, and λk ∈ (0, 1).

• IM: implicit fixed-point proximity algorithm as Algorithm 3, with

M =


0 −α1βA1A

>
2 0

−α2βA2A
>
1 0 0

−γA>1 −γA>2 0

, β = 0.01, α1β‖K‖2
2 = 0.999, α2β‖B‖2

2 = 0.999,

γ = 2β, λk ∈ (0, 1), vk+1
0 = 0.5vk + 0.5vk−1, and 1 iteration in the inner loop.

• ADMMCG: alternating direction method of multipliers with conjugate gradient method,

with α = 10.

In particular, we need the proximity operators of f ∗1 and f ∗2 . The proximity operator

proxβψ∗ is provided in the previous section and proxαf∗1 can be computed by using the

proximity operator of f1 as follows

proxαf∗1 (x) = x− α prox 1
α
f1

(x
α

)
.

4.3.2 L2-TV model

The image of “Cameraman” of size 256 × 256 in Figure 4.7(a) is used in our test. This

image is degraded by the space-variant Gaussian blur with filter size 17× 17, and standard

deviation σ fixed to be 1 in the vertical direction and varying from 0.5 to 17 in the horizontal

direction, and then the image is also contaminated by the additive Gaussian noise with
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standard deviation of σ = 0.02 (see Figure 4.7(b)). The L2-TV deblurring model with

regularization parameter of λ = 8 is used to recover the image.

In the L2-TV model, the solution may not be unique if K is not full rank. So we use the

error measure defined in equation (4.3), where x∗ (see Figure 4.7(c)) is the reference solution

generated by running implicit fixed-point proximity algorithm for 10,000 iterations and E(·)

is the objective function of the L2-TV model.

(a) Original image

(b) Blurry and noisy image (c) Reference solution with λ = 8

Figure 4.7: L2-TV image deblurring model

Figure 4.8 depicts the normalized errors of the objective function values evaluated at the

solutions obtained by GS, IM and ADMMCG against the CPU time consumption. We can

see that IM converges faster than GS and ADMMCG for the L2-TV model.
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Figure 4.8: Performance evaluations of the fixed-point proximity Gauss-Seidel algorithm
(GS), the implicit fixed-point proximity algorithm as Algorithm 3 (IM) and ADMMCG

4.3.3 L1-TV model

The image of “Barbara” of size 512×512 in Figure 4.9(a) is used in our test. This image is

degraded by the space-variant Gaussian blur with filter size 21× 21, and standard deviation

σ fixed to be 1 in the vertical direction and varying from 0.5 to 20 in the horizontal direction,

and then the image is also contaminated by the additive impulsive noise with noise density

of d = 0.3 (see Figure 4.9(b)). The L1-TV deblurring model with regularization parameter

of λ = 3 is used to recover the image. Again, for performance evaluations, we use the error

measure defined in equation (4.3), where x∗ (see Figure 4.9(c)) is the reference solution

generated by running implicit fixed-point proximity algorithm for 5,000 iterations and E(·)

is the objective function of the L1-TV model.
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(a) Original image

(b) Blurry and noisy image (c) Reference solution with λ = 3

Figure 4.9: L1-TV image deblurring model

Figure 4.10 depicts the normalized errors of the objective function values evaluated at

the solutions obtained by GS, IM and ADMMCG against the CPU time consumption. We

can see that IM converges faster than GS and ADMMCG for the L1-TV model.
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Figure 4.10: Performance evaluations of the fixed-point proximity Gauss-Seidel algorithm
(GS), the implicit fixed-point proximity algorithm as Algorithm 3 (IM) and ADMMCG



Chapter 5

Conclusion and Future Work

The fixed point proximity framework is a powerful and efficient tool for developing algo-

rithms for solving composite optimization problems. The framework converts the composite

optimization into fixed point problems and develops iterative algorithms to solve the fixed

point problems. Our proposed implicit fixed point proximity framework complements the

existing framework that is designed for explicit iterative algorithms, by developing implicit

iterative algorithms with theoretical results. The numerical experiments demonstrate that

the algorithms with a fully implicit scheme do have a potential to overcome the restrictions

in explicit algorithms, which encourages us to continue our study on implicit fixed-point

proximity framework.

In the future, we would like to improve the implicit fixed-point proximity framework in

the following directions.

• Block structure of the matrix M : In this dissertation, we proposed two block structures

designed for developing implicit fixed-point proximity algorithms. We seek to construct

other possible block structures of the matrix M that may yield to an implicit fixed-

point proximity algorithm with a favorable convergence speed.

• Composite optimization problems with three or more terms : The implicit fixed point

proximity framework, studied in this dissertation, is established based on a general com-

100
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posite convex optimization problem and can be adapted to develop implicit fixed point

proximity algorithms for optimization problems with different numbers of composite

terms. The flexibility in developing implicit algorithms for the composite optimization

problems with three or more terms motivates us to construct the matrix M creatively

to overcome the complexity in the resulting implicit algorithms.

• Convergence rate: It is proved in this dissertation that the convergence rate of a fixed-

point proximity algorithm is O( 1
K

), where K is the number of iterations. We shall aim

to improve this convergence rate by exploring the underlying properties of the operator

LM with a fully implicit expression.
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