3 research outputs found

    Classification and properties of fast linearly independent logic transformations

    Full text link

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Novel Fast Algorithms For Low Rank Matrix Approximation

    Full text link
    Recent advances in matrix approximation have seen an emphasis on randomization techniques in which the goal was to create a sketch of an input matrix. This sketch, a random submatrix of an input matrix, having much fewer rows or columns, still preserves its relevant features. In one of such techniques random projections approximate the range of an input matrix. Dimension reduction transforms are obtained by means of multiplication of an input matrix by one or more matrices which can be orthogonal, random, and allowing fast multiplication by a vector. The Subsampled Randomized Hadamard Transform (SRHT) is the most popular among transforms. An m x n matrix can be multiplied by an n x l SRHT matrix in O(mn log l) arithmetic operations where typically l \u3c\u3c min(m, n). This dissertation introduces an alternative, which we call the Subsampled Randomized Approximate Hadamard Transform (SRAHT), and for which complexity of multiplication by an input matrix decreases to O( (2n + l log n) m ) operations. We also prove that our sublinear cost variants of a popular subspace sampling algorithm output accurate low rank approximation (hereafter LRA) of a large class of input. Finally, we introduce new sublinear algorithms for the CUR LRA matrix factorization which consists of a column subset C and a row subset R of an input matrix and a connector matrix U. We prove that these CUR algorithms provide close LRA with a high probability on a random input matrix admitting LRA
    corecore