1,541 research outputs found

    Depth-Assisted Semantic Segmentation, Image Enhancement and Parametric Modeling

    Get PDF
    This dissertation addresses the problem of employing 3D depth information on solving a number of traditional challenging computer vision/graphics problems. Humans have the abilities of perceiving the depth information in 3D world, which enable humans to reconstruct layouts, recognize objects and understand the geometric space and semantic meanings of the visual world. Therefore it is significant to explore how the 3D depth information can be utilized by computer vision systems to mimic such abilities of humans. This dissertation aims at employing 3D depth information to solve vision/graphics problems in the following aspects: scene understanding, image enhancements and 3D reconstruction and modeling. In addressing scene understanding problem, we present a framework for semantic segmentation and object recognition on urban video sequence only using dense depth maps recovered from the video. Five view-independent 3D features that vary with object class are extracted from dense depth maps and used for segmenting and recognizing different object classes in street scene images. We demonstrate a scene parsing algorithm that uses only dense 3D depth information to outperform using sparse 3D or 2D appearance features. In addressing image enhancement problem, we present a framework to overcome the imperfections of personal photographs of tourist sites using the rich information provided by large-scale internet photo collections (IPCs). By augmenting personal 2D images with 3D information reconstructed from IPCs, we address a number of traditionally challenging image enhancement techniques and achieve high-quality results using simple and robust algorithms. In addressing 3D reconstruction and modeling problem, we focus on parametric modeling of flower petals, the most distinctive part of a plant. The complex structure, severe occlusions and wide variations make the reconstruction of their 3D models a challenging task. We overcome these challenges by combining data driven modeling techniques with domain knowledge from botany. Taking a 3D point cloud of an input flower scanned from a single view, each segmented petal is fitted with a scale-invariant morphable petal shape model, which is constructed from individually scanned 3D exemplar petals. Novel constraints based on botany studies are incorporated into the fitting process for realistically reconstructing occluded regions and maintaining correct 3D spatial relations. The main contribution of the dissertation is in the intelligent usage of 3D depth information on solving traditional challenging vision/graphics problems. By developing some advanced algorithms either automatically or with minimum user interaction, the goal of this dissertation is to demonstrate that computed 3D depth behind the multiple images contains rich information of the visual world and therefore can be intelligently utilized to recognize/ understand semantic meanings of scenes, efficiently enhance and augment single 2D images, and reconstruct high-quality 3D models

    Ising Graphical Model

    Get PDF
    The Ising model is an important model in statistical physics, with over 10,000 papers published on the topic. This model assumes binary variables and only local pairwise interactions between neighbouring nodes. Inference for the general Ising model is NP-hard; this includes tasks such as calculating the partition function, finding a lowest-energy (ground) state and computing marginal probabilities. Past approaches have proceeded by working with classes of tractable Ising models, such as Ising models defined on a planar graph. For such models, the partition function and ground state can be computed exactly in polynomial time by establishing a correspondence with perfect matchings in a related graph. In this thesis we continue this line of research. In particular we simplify previous inference algorithms for the planar Ising model. The key to our construction is the complementary correspondence between graph cuts of the model graph and perfect matchings of its expanded dual. We show that our exact algorithms are effective and efficient on a number of real-world machine learning problems. We also investigate heuristic methods for approximating ground states of non-planar Ising models. We show that in this setting our approximative algorithms are superior than current state-of-the-art methods

    Doctor of Philosophy

    Get PDF
    dissertationWe propose to examine a representation which features combined action and perception signals, i.e., instead of having a purely geometric representation of the perceptual data, we include the motor actions, e.g., aiming a camera at an object, which are al

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Disconfirmation modulates the neural correlates of the false consensus effect: A parametric modulation approach

    Get PDF
    The false consensus effect (FCE) - the tendency to (erroneously) project our attitudes and opinions onto others - is an enduring bias in social reasoning with important societal implications. In this fMRI investigation, we examine the neural correlates of within-subject variation in consensus bias on a variety of social and political issues. Bias demonstrated a strong association with activity in brain regions implicated in self-related cognition, mentalizing, and valuation. Importantly, however, recruitment of these regions predicted consensus bias only in the presence of social disconfirmation, in the form of feedback discrepant with participants' own attitudes. These results suggest that the psychological and neural mechanisms underlying the tendency to project attitudes onto others are crucially moderated by motivational factors, including the desire to affirm the normativity of one's own position. This research complements social psychological theorizing about the factors contributing to the FCE, and further emphasizes the role of motivated cognition in social reasoning

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all
    • 

    corecore