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Abstract

The Ising model is an important model in statistical physics, with over 10,000 papers published on the
topic. This model assumes binary variables and only local pairwise interactions between neighbouring
nodes. Inference for the general Ising model is NP-hard; this includes tasks such as calculating the
partition function, finding a lowest-energy (ground) state and computing marginal probabilities.

Past approaches have proceeded by working with classes of tractable Ising models, such as Ising
models defined on a planar graph. For such models, the partition function and ground state can be
computed exactly in polynomial time by establishing a correspondence with perfect matchings in a
related graph.

In this thesis we continue this line of research. In particular we simplify previous inference algo-
rithms for the planar Ising model. The key to our construction is the complementary correspondence
between graph cuts of the model graph and perfect matchings of its expanded dual. We show that our
exact algorithms are effective and efficient on a number of real-world machine learning problems.

We also investigate heuristic methods for approximating ground states of non-planar Ising models.
We show that in this setting our approximative algorithms are superior than current state-of-the-art
methods.

vii



viii



Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Graph Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Connectivity and Biconnectivity . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Dimer Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Counting Dimer Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Pfaffian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Constructing the Kasteleyn Matrix . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Pfaffian Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Review of the Ising Model 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Previous Work on the Partition Function of the Ising Model . . . . . . . . . . . . . . . 20

3.2.1 Ising Problem to Even Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Even Subgraphs to Perfect Matchings . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Non-Planar Ising Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Previous Work on the Ground States of the Ising Model . . . . . . . . . . . . . . . . . 27

3.3.1 Work by Bieche et al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Work by Barahona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Work by Thomas and Middleton . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Review of Graphical Models 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Undirected Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Conditional Independence Property . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x Contents

4.2.2 Factorization Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Variable Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Loopy Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Junction Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.5 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.6 Tree Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.7 Work by Globerson and Jaakkola . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Planar Ising Graphical Models: Inference 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Energy Minimization via Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Planarity Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.3 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4 Biconnectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Computing Ground States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Expanded Dual Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Complementary Perfect Matchings . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Computing the Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Computing the Partition Function and Marginal Probabilities . . . . . . . . . . . . . . 56

5.3.1 Plane Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 Odd Edge Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Constructing the Kasteleyn Matrix . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.4 Factoring Kasteleyn Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Planar Ising Graphical Models: Experiments 67
6.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Maximum Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Synthetic Binary Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Territory Prediction in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 The Game of Go in Machine Learning . . . . . . . . . . . . . . . . . . . . . . 77

6.4.2 Go Positions as Graph Abstraction Hierarchies . . . . . . . . . . . . . . . . . 80

6.4.3 Conditional Random Field Model . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.5 Outlook and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Contents xi

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Non-Planar Ising Graphical Models 91
7.1 Edmond’s Blossom-Shrinking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Application to Non-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Low-Genus Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.2 Minimax Spanning Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.3 Node Quenching with Implicit Lookahead . . . . . . . . . . . . . . . . . . . . 95
7.2.4 Tree Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.2 Comparison with the Ground State . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.3 Overall Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Conclusion 109
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 111



xii Contents



Chapter 1

Introduction

From the beginning of time, man has been trying to understand the world. To help us in this complex
task, we have created statistical models that aim to capture all the relevant information of a system.
We have models that explain many types of natural phenomena, ranging from gravity and movement of
tectonic plates to human behaviour and spread of disease. Models help us to generalise concepts and
transfer information between concepts. We can use models to answer many important questions about
a system, such as what is its most likely state or what is the probability of a particular event occurring
in that system. The procedure used to answer these questions is called statistical inference or simply
inference. There are many types of inference, some are suitable for many types of models and questions,
while others are specific to certain models and questions. Machine learning is the study of statistical
models and inference methods that are best suitable for these models.

One important model in statistical physics is the Ising model. This model assumes binary variables
and only local pairwise interactions between neighbouring variables. Despite its simplicity, the Ising
model has been successfully used to describe many physical systems, such as ferromagnetism, fluid
flow, neural activity, protein folding and many others. Inference in the general Ising model has been
shown to be NP-hard [2, 54], however it becomes tractable when certain conditions are met.

This thesis investigates tractable inference algorithms for the Ising model and discusses their appli-
cation to machine learning.

1.1 Thesis Contribution

Due to its origins, the Ising model is often described in the language of statistical physics. Here we aim
to describe it in the context of machine learning and assume no prior knowledge of statistical physics.
The contributions of this thesis are the following:

1. We provide a thorough survey of the Ising model, focussing on the computation of its partition
function and ground states.

2. We introduce the Ising graphical model: an undirected graphical model that obeys the constraints
of the Ising model, i.e., a binary-labeled energy function that is a sum of edge disagreement
costs. We show that the Ising graphical model with an additional bias node is equivalent to any
binary-labeled pairwise undirected graphical model.

3. We describe an exact and efficient framework for computing the partition function, worst mar-
gin violators, marginal edge probabilities and lowest-energy (ground) states of a planar Ising
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2 Introduction

graphical model. By doing so, we simplify previous inference algorithms and provide important
theoretical connections. In particular, we give the precise complementary connection between
graph cuts of the model graph and perfect matchings of its expanded dual. We explain the role of
planarity (resp. triangulation) in making that relation a surjection (resp. bijection).

4. We describe how our algorithms can be used in popular parameter estimation frameworks of
maximum-margin and maximum-likelihood. We show that our inference algorithms are efficient
and effective on a number of real-world machine learning problems.

5. We demonstrate that our algorithms for computing the ground state of a binary-labeled pairwise
Markov Random Field outperform current state-of-the-art algorithms.

1.2 Thesis Outline

It is recommended that this thesis is read in chronological order, i.e., from Chapter 2 to Chapter 8.
Chapters 2, 3 and 4 introduce the necessary background material, while Chapters 5, 6 and 7 describe
the contribution of this thesis. The following is a brief outline of the thesis:

• Chapter 2 introduces key definitions and notations used throughout the thesis. The chapter also
describes the solution to the Dimer problem, which is necessary for understanding Chapters 3, 5
and 6.

• Chapter 3 describes the Ising model explains previous approaches for the computation of the
partition function and ground states in this model.

• Chapter 4 presents a review of graphical models and their most popular inference algorithms.

• Chapter 5 introduces the Ising graphical model, which is a binary-labeled undirected graphical
model based on the Ising model. The chapter focusses on planar Ising graphical models and
describes a framework for exact and efficient inference algorithms in these models. The material
presented in this chapter is based on [110, 111]; the contribution of each author is assumed to be
equal, unless explicitly stated.1

• In Chapter 6 we apply the algorithms from Chapter 5 to real-world machine learning prob-
lems. We provide an experimental comparison of two popular parameter estimation methods:
maximum-margin and maximum-likelihood. The material presented in this chapter is based on
[57, 58, 110, 111]; the contribution of each author is assumed to be equal, unless explicitly
stated.1

• Chapter 7 discusses non-planar Ising graphical models and proposes heuristic algorithms for ap-
proximating ground states in these models. We compare these heuristic algorithms to the state-
of-the-art algorithms described in Chapter 4 on binary-labeled pairwise Markov Random Fields.
The work described in this chapter is in preparation for Journal of Machine Learning Research.1

• Chapter 8 contains a concise summary of our work and ideas for future work.

1C++ code implementing the algorithms described herein is available from http://nic.schraudolph.org/isinf/

http://nic.schraudolph.org/isinf/


Chapter 2

Background

This chapter introduces some of the key definitions and notations that are used throughout the thesis. In
Section 2.3 we introduce the Dimer problem, which is a key concept in understanding the next chapter
on the Ising model.

2.1 Mathematical Notation

We will use bold lowercase letters for vectors and bold uppercase for matrices. Calligraphic letters
will refer to a set and an element of that set will be represented by the corresponding lowercase letter.
Scalar quantities will be typeset in normal font. For example, a := [a1, a2, . . . , an] is a n-dimensional
row vector, while a is scalar. B := [b1, b2, . . . , bm] is a n × m matrix, which can also be written as
B = [bi j]n×m. E is a set and e ∈ E is an element of that set.

The meaning of | · | varies depending on the type of the argument. |B| = det B is the determinant of
matrix B, |b| = n is the length of vector b, while |b| is the absolute value (magnitude) of the scalar b.
If S is a set then |S| is the number of elements in S, i.e., its cardinality. ‖b‖ :=

√
b2

1 + . . . + b2
n is the

L2-norm of b. J·K denotes the indicator function, its value is 1 if its argument is true and 0 otherwise,
e.g., Ja > bK is 1 if a > b and 0 if a ≤ b. We will write sets using the curly brackets, i.e., {·}. We will
write permutations using the curved brackets, i.e., (2, 3, 1, 5, 4) is a permutation of the first 5 natural
numbers.

¬ denotes Boolean negation, e.g., ¬1 = 0 and ¬0 = 1. e is the Euler’s constant and ln x is the natural
logarithm (base e) of x. Sometimes we will write ex as exp (x).

P(A) is the probability of event A, while P(A|B) is the probability of event A, given that event B

occured.

2.2 Graph Notation

This thesis uses a fair amount of graph theory, some of it standard and some of it not. Here we will
describe the representation of graphs, graphical structures and common definitions.

Informally, a graph is an object which can be visualized as a collection of lines. These lines are the
edges of the graph, they can be either undirected or directed. A graph is directed if all its edges are
directed; undirected if all its edges are undirected. The endpoints of the edges are called the nodes (or

3



4 Background

the vertices) of the graph.

Formally, we will write a graph as G(V,E) where V is the set of vertices and E is the set of edges

of G. A vertex (or node) i will be represented as i ∈ V. If G is undirected then an edge between node i

and node j will be represented as (i, j) ∈ E and (i, j) = ( j, i). If G is directed then an edge from node i to
node j will be represented as (i, j) ∈ E. For directed graphs G, we will usually assume that if (i, j) ∈ E
then ( j, i) < E. Often we will work with weighted graphs, i.e., graphs whose edges are associated with
weights. We also need the definition of a clique:

Definition 1 A clique is a set of nodes, such that every pair of nodes in that set is connected by an edge.

A maximal clique is a clique which is not a proper subset of another clique. A clique with n nodes is

often called Kn.

Finally, we will define a cycle and a component:

Definition 2 A cycle of a graph G(V,E) is a closed path of its vertices v1, v2, . . . , vk, such that (vk, v1) ∈
E and for every i < k : (vi, vi+1) ∈ E. The set of edges of the cycle isO := {(v1, v2), . . . , (vi, vi+1), . . . , (vk, v1)}.
A cycle is called simple if it has no repeated edges or vertices.

Definition 3 A component of a graph with respect to a given property is a maximal subgraph that has

the property.

2.2.1 Connectivity and Biconnectivity

Most of the algorithms in this thesis assume that the graph is connected:

Definition 4 An undirected graph G(V,E) is connected if E contains at least one path between any two

nodes ofV. If this is not the case then the graph is disconnected.

For example the graph in Figure 2.1(a) is connected, while the graph in Figure 2.1(b) is not. A connected
component (Definition 3) is the maximal subgraph in which all nodes are connected. In Figure 2.1(b)
there are 2 connected components. Clearly if a graph is connected then it must contain exactly one
connected component. A related, but stronger requirement is that of biconnectivity:

Definition 5 A graph is biconnected iff it is connected and does not have any articulation vertices. An

articulation vertex or a cut vertex is a vertex whose removal (along with any incident edges) disconnects

the graph.

The graph in Figure 2.1(a) is connected, but not biconnected, because the central vertex is an articulation
vertex. However, the graph in Figure 2.1(c) is biconnected.

2.2.2 Planar Graphs

Definition 6 A graph is planar if it can be drawn in the plane R2 (infinite flat surface) without edge

intersections. The regions into which such a plane drawing partitions R2 are the faces of the drawing;

the unbounded region is the external face.
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(a) (b) (c)

Figure 2.1: (a) connected graph. (b) disconnected graph. (c) biconnected graph.
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(a) (b) (c) (d)

Figure 2.2: (a) a non-plane drawing of a planar graph; (b) a plane drawing of the same graph; (c) a different plane
drawing of same graph, with the same planar embedding as (b); (d) a plane drawing of the same graph with a
different planar embedding.

This definition might suggest that our algorithms must produce (or have access to) a plane drawing of
the graph. In practice, the drawing of the graph contains information that is not useful for us, such as:
the precise location of the vertices, and the exact shape of the edges. All we care about is the cyclic
(say, clockwise) ordering of the edges incident upon each vertex. In topological graph theory, this is
formalized in the notion of a rotation system [138, p. 21f]:

Definition 7 Let G(V,E) be an undirected, connected graph. For each vertex i ∈ V, let Ei denote

the set of edges in E incident upon i, considered as being oriented away from i, and let πi be a cyclic

ordering of Ei. A rotation system for G is a set Π = {πi : i ∈ V}.

For example for vertex 4 in Figures 2.2(b) and 2.2(c), E4 = {(4, 3), (4, 1), (4, 2), (4, 5)} and π4 =

((4, 5), (4, 3), (4, 2), (4, 1)). With some abuse of notation, let πi(i, j) denote the successor edge of (i, j)
in the cyclic ordering πi. For example, π4(4, 2) = (4, 1) and π4(4, 1) = (4, 5). Informally, this
means that if we are located at vertex 4 and move clockwise from (4, 2) then we will reach edge
(4, 1). To define the sets Ei of oriented edges more formally, construct the directed graph G(V,E′),
where E′ contains a pair of directed edges (known as edgelets) for each undirected edge in E, that is,
(i, j) ∈ E′ ⇐⇒ [(i, j) ∈ E ∨ ( j, i) ∈ E]. Then Ei = {( j, k) ∈ E′ : i = j}. Rotation systems directly
correspond to topological graph embeddings in orientable surfaces:

Theorem 8 (White and Beineke [138]) Each rotation system determines an embedding of G in some

orientable surface S such that ∀i ∈ V, any edge (i, j) ∈ Ei is followed by πi(i, j) in (say) clockwise

orientation, and such that the faces F of the embedding, given by the orbits (cycles) of the mapping
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(i, j)→ π j( j, i), are 2-cells (topological disks).

Note that while in graph visualisation “embedding” is often used as a synonym for “drawing”, in
modern topological graph theory it stands for “rotation system”. We adopt the latter usage, which views
embeddings as equivalence classes of graph drawings characterized by identical cyclic ordering of the
edges incident upon each vertex. The graphs in Figures 2.2(b) and 2.2(c) have the same embedding
as evident from the equivalence of their πi. The embedding in Figure 2.2(d) differs, since we have
π′4 = ((4, 5), (4, 1), (4, 3), (4, 2)) and π′4(4, 2) , π4(4, 2). A sample face in Figure 2.2(b) or 2.2(c) is given
by the orbit

(4, 1) → [π1(1, 4) = (1, 2)] → [π2(2, 1) = (2, 4)] → [π4(4, 2) = (4, 1)].

The same starting edge in Figure 2.2(d) gives the orbit

(4, 1) → (1, 2) → (2, 4) → (4, 5) → (5, 4) → (4, 1).

Definition 9 The genus g of a surface is the maximum number of non-intersecting closed curves which

one can draw on the surface without disconnecting it.

Intuitively, the genus g of the embedding surface S is the number of “holes” in S . So if S is a plane or
a sphere then g = 0. If S is a torus (donut) then g = 1. The genus can be determined from the Euler

characteristic

|V| − |E| + |F | = 2 − 2g, (2.1)

where |F | is found by counting the number of orbits in the rotation system, as described in Theorem 8.
Since planar graphs are exactly those that can be embedded on a surface of genus g = 0 (a topological
sphere), we arrive at a purely combinatorial definition of planarity:

Definition 10 A graph G(V,E) is planar iff it has a rotation system Π producing exactly 2 + |E| − |V|
orbits. Such a system is called a planar embedding of G, and G(V,E,Π) is called a plane graph.

A nice characterization of planar graphs was given by Kuratowski [78]:

Theorem 11 A graph is planar iff it does not contain a subgraph that is homeomorphic to K3,3 or K5

(see Figure 2.3 and Definition 1).

Theorem 11 implies that the graphs in Figure 2.3 are not planar. Indeed it is not possible to draw
them on a plane without any crossing edges. The graph in Figure 2.3(c) is homeomorphic to the graph
in Figure 2.3(b). A graph G1 is homeomorphic to a graph G2 if a sequence of allowed steps transform
it into G2. The allowed steps are:

1. Edge (i, j) can be subdivided into two edges (i,w) and (w, j) via the addition of vertex w.

2. Two edges (i,w) and (w, j) can be merged into a single edge (i, j) via the removal of vertex w,
provided that the degree of w is 2.
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(a) (b) (c)

Figure 2.3: Examples of non-planar graphs. (a) Utility graph K3,3. (b) Complete graph of 5 nodes or K5. (c) A
graph that is homeomorphic to K5.

All planar graphs have a corresponding dual graph:

Definition 12 The dual G∗(F ,E) of an embedded graph G(V,E,Π) has a vertex for each face of G,

with edges connecting vertices corresponding to faces that are adjacent (i.e., share an edge) in G.

G∗ is a pseudograph, i.e., it may contain loops and multiple edges (see Figure 2.4). It is important to
note that G∗ has the same set of edges as G: a dual edge crosses its corresponding edge in G. We will
use this fact to simplify many algorithms.

Figure 2.4: The original graph G (blue) with its corresponding dual graph G∗ (red). Every edge in G is crossed by
an edge in G∗ and vice versa.

2.3 Dimer Problem

The dimer problem, also known as the domino tiling problem, is a fundamental problem in graph
theory, which underpins many of the definitions and algorithms described in this thesis. We will begin
by introducing the problem, followed by a detailed description of its solution.

Informally the dimer problem asks us in how many ways can we cover the edges of a graph with
dimers. A dimer is a graph that consists of a single undirected edge. For example, there are 3 ways to
cover the graph in Figure 2.5(a) with dimers, shown in Figures 2.5(b, c, d).
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1 2 3

4 5 6

1 2 3

4 5 6

(a) (b)

1 2 3

4 5 6

1 2 3

4 5 6

(c) (d)

Figure 2.5: A graph (a) and all its 3 corresponding dimer coverings (in bold) shown in (b), (c) and (d).

More formally, the problem is to count the number of dimer coverings (Definition 13) or equiva-
lently the number of perfect matchings (Definition 14) in a graph:

Definition 13 A dimer configuration of a graph G is a subgraph of G, whose connected components

(Definitions 3, 4) are dimers. A dimer covering of G is a dimer configuration which spans all the vertices

of G.

Definition 14 A perfect matching of a graph G(V,E) is a subsetM ⊆ E of edges wherein exactly one

edge is incident upon each vertex: ∀v ∈ V, |v| = 1 in G(V,M). Its weight w(M) is the sum of the

weights of its edges.

It is important to note that not all graphs have a perfect matching. For example, graphs with an odd
number of nodes cannot have a perfect matching. A dimer covering can be represented as a set of edges
(dimers) that are included in the covering. For example, a dimer covering of Figure 2.5(b) can be written
as {(v4, v1), (v3, v6), (v2, v5)}. Note that there are many ways to write the same dimer covering, since we
can interchange the vertices within each dimer, as well as, the order of the dimers. In the next section,
we will present a canonical representation of dimer coverings.

2.3.1 Counting Dimer Coverings

Let G(V,E) be a graph that admits a perfect matching, whereV = {v1, . . . , v2n} is the set of 2n vertices
and E is the set of edges. Remember that a dimer covering must span all the vertices, thus a dimer
covering of G will contain exactly n dimers. As discussed in the previous section, the order of vertices
and dimers in a dimer covering does not matter. Thus each dimer covering can be represented in 2nn!
ways. From these representations we would like to select a single (unique) representation.

We will begin by defining a canonical representation of a dimer covering. Define the kth dimer in
the representation to be the edge connecting nodes vik and v jk . For uniqueness we will write this edge
as (vik , v jk ) where ik < jk. We can define a total order over dimers based on their first vertices: for
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each pair of dimers, let (vik , v jk ) < (vim , v jm ) iff ik < im. Now we can simply sort the dimers in a dimer
covering and obtain its unique representation:

{(vi1 , v j1 ), (vi2 , v j2 ), . . . , (vin , v jn )}, (2.2)

where ik < ik+1 ∀k. For example, using this representation the dimer covering in 2.5(b) becomes
{(v1, v4), (v2, v5), (v3, v6)}. In summary we have partitioned the set of vertex indices {1, 2, . . . , 2n} into n

pairs: {(i1, j1), (i2, j2), . . . , (in, jn)} such that ik < jk, ik < ik+1 ∀k. Now to count the dimer coverings, all
we need is a sum over the set of such partitions. It turns out that the form of this sum looks very similar
to the Pfaffian of a particular matrix K.

2.3.2 Pfaffian

In the previous section we have hinted that the number of dimer coverings can be computed via a
Pfaffian of a particular matrix K. Now we will provide a formal definition of the Pfaffian, which will be
followed by the construction of K.

Consider a generic 2n × 2n matrix A = [ai j]2n×2n. Let α be a partition of the set {1, 2, . . . , 2n} into
n pairs: α := {(i1, j1), (i2, j2), . . . , (in, jn)} such that ik < jk ∀k and i1 < i2 < . . . < in. P is the set of all
such partitions α. Let

πα :=

 1 2 3 4 . . . 2k − 1 2k . . . 2n − 1 2n

i1 j1 i2 j2 . . . ik jk . . . in jn

 (2.3)

= (i1, j1, i2, j2, . . . , in, jn) (2.4)

be the permutation2 corresponding to α, so πα(1) = i1, πα(2) = j1, . . . , πα(2k − 1) = ik, πα(2k) = jk
and so on. Notice that (2.4) corresponds precisely to the representation of dimer coverings in (2.2). The
Pfaffian of A is then given by

Pf A :=
∑
α∈P

sgn παAi1, j1 Ai2, j2 . . . Ain, jn

=
∑
α∈P

sgn παAπα(1),πα(2) Aπα(3),πα(4) . . . Aπα(2n−1),πα(2n)

=
∑
α∈P

sgn πα
n∏

k=1

Aπα(2k−1),πα(2k), (2.5)

where sgn πα is the signature of πα and is defined as +1 if πα is even and −1 if πα is odd. A permutation
is even if it can be expressed as a composition of an even number of transpositions, and otherwise it is
odd. A transposition (i, j) is a function that maps i to j and vice-versa. For example, the permutation
that turns the list {1, 2, 3, 4, 5} into {3, 4, 5, 2, 1} is odd because it can only be written as a composition
of an odd number of transpositions: (1, 3, 5)(2, 4) = (1, 3)(1, 5)(2, 4).

2We use two notations for permutations: two-line notation (2.3) and the cycle notation (2.4).
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Skew-Symmetry

A skew-symmetric matrix is a matrix A such that A = −A> (or Ai j = −A ji for all i, j). The Pfaffian
of a skew-symmetric matrix has some nice properties that we can exploit. Consider a single term
of such a Pfaffian computation tπ := sgn πAπ(1),π(2) . . . Aπ(2n−1),π(2n). The following modifications of
π = (i1, j1, . . . , in, jn) leave tπ unchanged:

1. Interchange of any two partners: ik and jk. sgn π changes sign, but then
Aπ(2k−1),π(2k) becomes Aπ(2k),π(2k−1) = −Aπ(2k−1),π(2k), and thus tπ remains unchanged.

2. Interchange of any two pairs of partners: (ik, jk) and (im, jm). This does not affect sgn π and only
interchanges Aπ(2k−1),π(2k) with Aπ(2m−1),π(2m), which leaves tπ unchanged.

3. Obviously any combination of 1 and 2.

In 1849 Cayley [15] proved that the Pfaffian of any skew-symmetric matrix A can be computed via its
determinant:

Pf2 A = det A. (2.6)

Note that the Pfaffian of an odd n × n skew-symmetric matrix is defined to be zero, as the determinant
of an odd skew-symmetric matrix is zero. This can be seen as

det A = det A> = det (−A)) = (−1)n det A.

When n is odd, this implies that det A = − det A, i.e., det A = 0. (2.6) is a very useful property, because
it means that we can compute Pfaffians in polynomial time in the number of elements. From now on
when we refer to the Pfaffian of a matrix, we will assume that the matrix is even and skew-symmetric.

Example

We now present a detailed example of a Pfaffian computation. Consider the matrix A defined as

A :=


0 a b c

−a 0 d e

−b −d 0 f

−c −e − f 0

 .
The following table shows all the possible allowed partitions α of the set {1, 2, 3, 4}. For each α, πα is
the associated permutation, sgn πα is its signature and the right-most column is the contribution to the
Pfaffian sum.

α πα sgn πα contribution
{(1, 2), (3, 4)} I +1 +a f
{(1, 4), (2, 3)} (2, 4)(2, 3) +1 +cd
{(1, 3), (2, 4)} (2, 3) −1 −be
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Summing the contribution column we obtain the final answer: Pf A = a f − be + dc. Now consider
the determinant of A. Ignoring the terms that are 0, we have:

det A = 2a f dc − 2a f be − 2bedc + a2 f 2 + b2e2 + d2c2

= (a f − be + dc)2 = Pf2 A.

2.3.3 Constructing the Kasteleyn Matrix

We now discuss what K looks like and state precisely its relationship to G. We will refer to K as the
Kasteleyn matrix, due to its founder Kasteleyn [59, 61].

First of all, we know that the row and column indices of K must correspond to the vertices of G,
i.e., K is a |V| × |V| sized matrix. We also know that the terms in Pf K that do not correspond to dimer
coverings must be 0. To ensure this, we set Ki j := 0 if there is no edge between vi and v j. This must
also include Kii := 0, since we are not allowed to have any self-loops.

Since we want to evaluate Pf K via (2.6) we must make K skew-symmetric. This is achieved by
letting Ki j := −K ji, which still leaves us with a lot of freedom.

We now have that all non-zero terms in Pf K correspond to actual dimer coverings. In order to count
the dimer coverings correctly, these terms must contribute +1 to the sum in Equation 2.5. Also they can
all be −1, since Pf2 K = (−Pf K)2 = Pf2 (−K) will still produce a valid real-valued determinant. To
summarize, we want all non-zero terms in Pf K to have the same sign. This implies that the product of
any pair of non-zero terms, corresponding to two dimer coverings, should be positive:

sgn πβ sgn πγ
n∏

k=1

Kπβ(2k−1),πβ(2k)Kπγ(2k−1),πγ(2k) > 0, (2.7)

where β, γ ∈ P are the partitions corresponding to the two dimer coverings. Although β and γ are fixed,
we have freedom in selecting πβ and πγ, provided that sgn πβ and sgn πγ remain unchanged.

Let us try to interpret the product in (2.7). To facilitate further discussion it is convenient to define a
superposition of two dimer coverings. The superposition S (Di,Dk) of two dimer coverings Di and Dk

is a union of Di and Dk whose edges alternate between Di and Dk.

We now describe how a superposition is constructed referring to the example in Figure 2.6. Let Dβ

(Figure 2.6 bold) and Dδ (Figure 2.6 dashed) be the dimer coverings that are generated with partitions
β := {(1, 4), (2, 3), (5, 6)} and γ := {(1, 4), (2, 5), (3, 6)} respectively. We begin with an arbitrary starting
node, say v1. This node (as all other nodes) is adjacent to exactly one edge in Dβ. Following this edge
we arrive at v4. v4 will be adjacent to a single edge in Dγ. Following that edge, we will either arrive at
our initial node (which is the case here) or a new node. Since there is a finite number of nodes, we will
always arrive at our starting node, thus completing a cycle. Once we have completed a cycle we select
a new arbitrary starting node (that is not already in a cycle) and repeat the procedure. At the end of this
procedure, each node will belong to exactly one cycle, called a superposition cycle. The superposition
cycles visit every node and therefore constitute a cycle covering, in which every cycle has an even
length. In Figure 2.6 the superposition cycles of S (Dβ,Dδ) are: 1-4-1 and 2-3-6-5-2. The permutation
of this superposition can be conveniently written as a product of even cyclic groups corresponding to
each superposition cycle, i.e., (1, 4)(2, 3, 6, 5).
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1 2 3

4 5 6

+

1 2 3

4 5 6

=⇒

1 2 3

4 5 6

Dβ Dγ S (Dβ,Dδ)

Figure 2.6: Superposition S (Dβ,Dδ) of two dimer coverings Dβ and Dγ.

It should now become apparent that it is possible to select πβ and πγ such that the product in (2.7)
corresponds to a superposition of Dβ and Dδ. In particular, sgn πβ sgn πγ can be written as sgn π where
π is a product of even cyclic groups. Each such group thus contributes a factor of (-1) to sgn π. We now
need to select terms in K to cancel out these minus signs.

The simplest case is when the cyclic group has length 2. In this case the minus sign is automatically
compensated, because the factors contributing to (2.7) take the form Ki jK ji = −K2

i j, which is negative.
For all other cyclic groups we require an odd number of negative terms to cancel out the minus sign

of the signature. Let us represent the sign of a matrix element Ki j by an orientation of the edge (vi, v j).
In particular if Ki j = +1 then the edge is oriented from vi to v j, otherwise it is oriented from v j to vi.
An odd number of negative terms now corresponds to an odd number of edges oriented in the same
direction. We can now formalize the requirement for the signs of the matrix elements:

Lemma 15 Each cycle occurring in a superposition of two dimer coverings must contain an odd num-

ber of edges oriented in the same direction.

Here it is convenient to introduce the orientation of the graph:

Definition 16 An orientation of an undirected graph G(V,E) is a set E′ of oriented edges with |E′| = |E|

such that for each (i, j) ∈ E, E′ contains either (i, j) or ( j, i), but not both.

An orientation of the edges of G satisfying Lemma 15 is called an admissible orientation or a Pfaffian

orientation. We say that a graph G is Pfaffian if there exists a Pfaffian orientation for G. Notice that we
do not require that every even cycle of G has an odd orientation parity, but only those cycles that are a
result of a superposition of two dimer coverings. This is a real restriction, without which the condition
would be difficult to satisfy. In the next section we show which graphs are Pfaffian and how to construct
an admissible orientation.

2.3.4 Pfaffian Graphs

The complete characterization of Pfaffian graphs remains an unsolved problem. However, Kasteleyn
[60, 61] made considerable progress by showing the following fundamental theorem

Theorem 17 (Kasteleyn Theorem) Every planar graph has a Pfaffian orientation.

To prove Theorem 17 we need to show that every planar graph can be oriented such that every super-
position cycle has an odd number of edges oriented in the same direction. The direction of an edge in
a cycle refers to the direction of that edge in reference to the center of the cycle. For convenience we
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chose the clockwise direction as our reference direction. Thus we require that every superposition cycle
has an odd number of edges oriented clockwise, i.e., each of its cycles is clockwise odd. We call a face
clockwise odd if the cycle on its perimeter is clockwise odd. We begin by showing that

Lemma 18 Every plane graph G(V,E,Π) can be oriented such that every face (except possibly one)

is clockwise odd. This orientation is called the clockwise odd orientation.

Proof (based on [61, p. 93]) We will prove this Lemma constructively. Select an arbitrary face f1 ∈ F

and orient all its edges except one arbitrarily. We can always orient the last edge, such that f1 is
clockwise odd. Now select an adjacent face f2, one that shares an edge with f1. f2 must have one or
more other edges. We orient all these edges except one arbitrarily. Again we can choose the last edge to
make f2 clockwise odd and move on to an adjacent face. We continue this process until all faces have
been oriented. This process encounter problems if orienting the last edge of fi completes the orientation
of two faces at once. If this occurs while orienting the very last edge then the Lemma 18 still holds,
since we would have already oriented |F | − 1 faces.

However we need to consider carefully if this occurs earlier (Figure 2.7). This will happen only
if we select faces in such way that they form a region that is not simply connected, i.e., a region that
contains “holes” (such as face 5 in Figure 2.7). We can overcome this problem by working with the dual
graph G∗(V∗,E∗). Each dual node ik ∈ V∗ correspond to a face fk of G. Starting from an arbitrary node
in ∈ V∗, we traverse G∗ (in any order) and output the list of visited nodes in postorder i1, i2, . . . , in. We
now give a clockwise odd orientation to the faces of G in the order f1, f2, . . . , fn. It may or may not be
possible to give a clockwise odd orientation to the last face fn, however Lemma 18 still holds.

The reason this algorithm works is the following. If we are orienting face fi with i < n then there
must exist k > i such that fk borders fi and fk hasn’t been oriented. This means that fi has at least one
unoriented edge — the edge shared by fi and fk. We can choose how to orient this edge and thus make fi
clockwise odd. Therefore, the first i such that fi cannot be given a clockwise odd orientation is i = n, in
which case n − 1 faces have a clockwise odd orientation and Lemma 18 holds. For further explanation
and pseudocode see Section 5.3.2.

Lemma 19 In a plane graph G(V,E,Π), if all faces are clockwise odd then every cycle enclosing an

even number of vertices is clockwise odd.

Proof (based on [87, p. 321]) For every cycle, the number of clockwise edges and the number of vertices
that it encloses must have opposite parity. Let C be any cycle in G. Suppose there are f faces inside C

and let ci be the number of clockwise edges on the boundary of face i for i = 1, . . . , f . Since all faces
are clockwise odd, each ci is odd and hence

f ≡
f∑

i=1

ci (mod 2). (2.8)

Let v be the number of vertices enclosed by C, e the number of edges inside C, k the number of edges
on C and c the number of those edges that are clockwise. Thus the number of vertices in C is v + k, the
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6

Figure 2.7: This graph is embedded on a sphere and now the “external face” 6 simply becomes another face. If
the faces are oriented in the order 1, 2, 3, 4, 5, 6 then there is no way to orient the edge (a, b) such that both faces 4
and 5 are clockwise odd. Since face 6 is also not clockwise odd, there will be two faces that are not clockwise odd,
thus violating the requirement of Lemma 18.

number of edges in C is e+ k and the number of faces in C is f + 1 (we also count the outer face). Thus
by Euler’s formula we have

|V| − |E| + |F | = v − e + f + 1 = 2,

and hence

e = v + f − 1. (2.9)

Every edge inside C will border exactly two faces. In one of these faces it will be clockwise, while in
the other it will be counter-clockwise. Thus counting all clockwise edges for each face is equivalent to
counting all edges inside C, so we have

∑ f
i=1 ci = c + e. Combining this with Equation 2.9 we can now

rewrite Equation 2.8 as

f ≡
f∑

i=1

ci = c + e = c + v + f − 1 (mod 2), (2.10)

and hence c + v − 1 ≡ 0 (mod 2). This implies that c + v is odd, meaning that c has an opposite parity
to v.

The combination of Lemmas 18 and 19 tells us that every plane graph can be oriented such that every
cycle enclosing an even number of points is clockwise odd. To complete the proof of Theorem 17 we
need the following to hold

Lemma 20 In a plane graph G(V,E,Π), all superposition cycles enclose an even number of vertices.

Proof (based on [61, p. 94]) By definition, a plane graph cannot contain any crossing edges. This im-
plies that the superposition cycles cannot cross. Thus, each superposition cycle encloses either zero or
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more complete superposition cycles. Since each superposition cycle contains an even number of ver-
tices, we can conclude that each superposition cycle will enclose an even number of vertices (including
zero).

Since the set of superposition cycles is a subset of all cycles, combining Lemma 20 with Lemmas
18 and 19 proves that every plane graph can be oriented such that every superposition cycle is clockwise
odd. In other words we have shown that every planar graph is Pfaffian. Finally it must be noted that the
construction used for Lemma 18 is a polynomial-time algorithm for constructing a Pfaffian orientation
for plane graphs.

It turns out that the class of Pfaffian graphs is much larger than just those that are planar [127]:

• Every finite graph with no subgraph homeomorphic to K3,3 is Pfaffian [85].

• A graph G is Pfaffian if it can be drawn in the plane (possibly with crossings) so that every perfect
matching of G intersects itself an even number of times, i.e., has an even crossing number [96].

Note that the above only show the existence of a Pfaffian orientation, while constructing the Pfaffian
orientation in polynomial-time may still be impossible. For a general graph with genus g, Kasteleyn
[61] noted that the number of perfect matchings can be computed by evaluating 4g determinants. This
result was independently proven by Galluccio and Loebl [36] and Tesler [125].

2.3.5 Examples

We now present a complete example of counting the number of perfect matchings in a graph. Consider
the graph in Figure 2.5(a). We orient the edges of the graph, such that each face (except possibly the
outer face) has an odd number of edges oriented clockwise (Figure 2.8).

1 2 3

4 5 6

Figure 2.8: Pfaffian or clockwise-odd orientation of a graph. Notice that the outer face 1 − 2 − 3 − 6 − 5 − 4 − 1
does not need to be clockwise-odd, although it is in this case.

Based on this oriented graph G(V,E′), we construct the corresponding skew-symmetric matrix K
using the following rules:

Ki j =


+1 if (vi, v j) ∈ E′

−1 if (v j, vi) ∈ E′

0 if i=j
0 otherwise

(2.11)
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Using the above, we obtain the matrix

K =



0 +1 0 −1 0 0
−1 0 +1 0 +1 0

0 −1 0 0 0 −1
+1 0 0 0 +1 0

0 −1 0 −1 0 +1
0 0 +1 0 −1 0


.

Now, the number of perfect matchings can be computed as the Pfaffian of K using (2.6): Pf K =
√

det K =
√

9 = 3. This agrees with the total number of perfect matchings shown in Figures 2.5(b-d).
Kasteleyn [59], Temperley and Fisher [124] independently showed that the dimer problem on the

2n×2m lattice has a closed-form solution. A Pfaffian orientation of a lattice can be achieved by orienting
all horizontal edges in the same direction, while orienting vertical edges in alternating directions as
shown in Figure 2.9. Computing the Pfaffian of the corresponding matrix we find that the number of
dimer coverings is

n∏
i=1

m∏
k=1

(
4 cos2 πi

2n + 1
+ 4 cos2 πk

2m + 1

)
. (2.12)

Figure 2.9: An example of a Pfaffian orientation of a lattice.



Chapter 3

Review of the Ising Model

This chapter introduces the Ising model — a classical model in statistical physics. We give a description
of the model and provide some motivation for its use. This is followed by a brief history of the main
developments associated with the model. We then focus on two key problems in the Ising model:
computation of the partition function (Section 3.2) and the ground state (Section 3.3).

3.1 Introduction

Consider a large lake. As winter approaches the air becomes cooler and so does the temperature of
the water. Then at around 0◦ degrees the surface of the lake freezes. This occurs because the water
molecules change their state from liquid to solid, known as a phase transition. Amazingly the lake
freezes across the whole surface at roughly the same time. How do the molecules know at which
temperature to freeze and how do they “communicate” with each other to achieve that feat? The same
phenomenon is observed in other systems, such as when a cooling lump of iron suddenly becomes
magnetic at a certain temperature.

In 1925, the German physicist Ernst Ising introduced a simple graphical model, called the Ising

model [53], that can model such phenomena. The Ising model can be formulated on any graph as
follows: consider an undirected graph G = (V,E), where V = {1, . . . ,N} is a set of N sites, and E is
a set of edges representing the interactions between these sites. Every site i has a corresponding spin

variable si. These spins are binary-valued3, taking values +1 for “up” or −1 for “down”. Two spins si

and s j may interact with each other. The energy of such an interaction depends on whether the values of
the participating spins are the same or different: it is given by −Ji jsis j, where Ji j is the strength of the
interaction. The Ji j are independent identically distributed random variables. If Ji j > 0 the interaction
is called ferromagnetic, if Ji j < 0 the interaction is called antiferromagnetic, and otherwise Ji j = 0 and
the two spins do not interact. For each pair of interacting spins si and s j (i.e., Ji j , 0) there exists a
corresponding edge (i, j) ∈ E. The state of the model s is an assignment of all N variables si, 1 ≤ i ≤ N.
The set of all possible configurations is Ω = {−1,+1}N . As well as pair-wise interactions there can also
be an external field that affects each site i with energy −hisi. Thus in the general case the energy of a

3The Potts model [101] is a generalization of the Ising model which allows the spins to have more than 2 states.
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configuration s ∈ Ω is given by the so-called Edwards-Anderson Hamiltonian [25]:

H(s) := −
∑

(i, j)∈E

Ji jsis j −
∑
i∈V

hisi. (3.1)

When hi = 0 ∀i ∈ V the system is said to have no external field (also called zero magnetic field

condition), in which case the energy of the configuration s becomes

H(s) = −
∑

(i, j)∈E

Ji jsis j. (3.2)

Note that negating all the spins si gives a different configuration s′ whose energy is the same: H(s) =
H(s′). From now on, we will regard s and its negation s′ as a single state. The system prefers lower
energy states, i.e., those s that minimize H(s). Hence such states are more probable; the degree of
preference depends on the temperature T of the system. Formally, the probability that the system with
the energy (3.2) is in configuration s is given by

P(s) =
1
Z

exp
(
−
H(s)
κT

)
, (3.3)

where κ is the Boltzmann constant. For the sake of simplicity we will define β := 1/(κT ). Z is known
as the partition function and is defined as

Z(β) :=
∑
s∈Ω

exp(−βH(s)). (3.4)

The partition function plays the role of a normalizing constant, ensuring that the probabilities add up to
one. This can be easily seen if we compute the total probability:

∑
s∈Ω
P(s) =

1
Z

∑
s∈Ω

exp(−βH(s)) =
1
Z

Z = 1. (3.5)

In Equation 3.3 as the temperature T decreases the configurations with lower energy become more
likely. In fact in the limit T → 0 only the configurations of lowest energy have a non-zero probability
of occurring. Hence an important task is to find such configurations s∗ that minimize the energy of the
system. Such a configuration is known as a ground state and is defined as

s∗ := argmin
s∈Ω

H(s). (3.6)

In Equation 3.2, if Ji j > 0 then having both si and s j in the same state (i.e., si = s j) can only decrease
the energy. Therefore if Ji j > 0 ∀(i, j) ∈ E then it is clear that s∗ is the configuration where all spins are
in the same state. However the problem becomes far from trivial when Ji j can be negative. The Ising
model can be used to answer many other questions such as:

• What is the most likely spin at a given site?

• At what temperature does a phase transition occur?



§3.1 Introduction 19

• What is the correlation between spins at two given sites?

For some Ising models the above questions can be answered exactly, e.g., when the underlying graph is
planar (see Sections 3.2 and 3.3). In the general case, however, exact methods are too slow and one must
resort to approximations. A plethora of heuristic methods have been used to study the Ising model, for
example: Monte Carlo simulation [55, 80, 120], Simulated Annealing [63], Parallel Tempering [49, 88],
Extremal Optimisation [10] and genetic algorithms [48].

Although the Ising model can be formulated on any graph, often a 2-dimensional rectangular lattice
is used. When the size of the model lattice is too small, the behavior of the spins at the boundary
of the lattice may produce erratic results. For this reason, the model is often given periodic boundary

conditions, i.e., nodes on one side of the lattice are connected to nodes on its opposite side. The resulting
graph is a toroidal lattice.

3.1.1 Brief History

The original motivation for the model was the phenomenon of ferromagnetism. Iron is magnetic, so
once it is magnetized it stays magnetized for a long time compared to any atomic time scale. Once the
electron’s spin was discovered, it became clear that magnetism is due to a large number of electrons
spinning in the same direction. It was then natural to ask how the electrons all know which direction to
spin, if they can only influence their neighbours. The Ising model was designed to investigate whether
a large fraction of the electrons could be made to spin in the same direction using only local forces.

Interestingly, the Ising model was first proposed by Ernst Ising’s research director Lenz [82] in
1920, but the model is more commonly attributed to Ising. In fact even Lenz himself has never made
any attempt to claim credit for suggesting the model, and even his colleagues at Hamburg University
were not aware of his contribution [13]. In his PhD thesis, Ising [52] solved the one-dimensional Ising
model and showed that it does not exhibit a phase transition. On the basis of this result, he concluded
that the Ising model does not have a phase transition in any dimension.

In 1936 Peierls proved Ising wrong, using a probabilistic argument to show that a phase transition
can occur in the two-dimensional Ising model [100]. In 1941 Kramers and Wannier [74] showed that
a matrix formulation of the model allows the partition function to be related to the largest eigenvalue
of the matrix, and established the exact location of the phase transition — the Curie point. A break-
through came in 1944 when Lars Onsager computed the partition function of the Ising model on a
two-dimensional square lattice with no external field [97]. In 1952 Kac and Ward [56] attempted to pro-
vide a simpler alternative to Onsager’s formula based on a combinatorial interpretation. Kac and Ward
[56] viewed the partition function as a generating function for the problem of counting even subgraphs
in an n ×m lattice, which can be computed by finding the determinant of an appropriately constructed
4mn × 4mn matrix. Their argument, however, was found to be incomplete, since some of the closed
polygons were not being counted correctly. The clue to the correct approach was found by Feynman
who conjectured a relation between functions of graphs and closed paths on lattices [45]. In 1960
Sherman [117] proved Feynman’s conjecture, thus making the Kac-Ward method completely rigorous.

Also in 1960, Hurst and Green [50] used field theory techniques to arrive at a new method that
combines the algebraic solution of Onsager [97] with the combinatorial solution of Kac and Ward [56],
but is simpler than either. This was the first method that used the Pfaffian of a skew-symmetric matrix
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to solve the Ising model. The Pfaffian method was developed further in the fundamental papers of
Kasteleyn [59, 60] and Fisher [30, 31].

In 1982 Barahona [2] showed that finding the ground state of an Ising model defined on a square
lattice with an external field is NP-hard. He also showed that finding the ground state of an Ising model
defined on a two-level square lattice without an external field is NP-hard. Based on Barahona’s work, in
2000 Istrail [54] proved that computing the partition function of a three-dimensional Ising model to be
NP-complete. He explained that NP-completeness arises due to the non-planarity of the model involved,
rather than its number of dimensions. Finally, Bertoni et al. [6] showed that the ground state of a three-
dimensional Ising model is not approximable, meaning that there is no polynomial-time algorithm that
approximates the energy of the ground state within a certain ratio.

3.2 Previous Work on the Partition Function of the Ising Model

The partition function of an Ising model can be viewed as a sum over its spin configurations. It is
well known that the partition function of a planar Ising model with no external field (3.4) can be found
exactly by computing the Pfaffian of a particular matrix derived from the model graph G [56]. The
mapping to the Pfaffian is constructed in two steps: first the Ising partition function on G is mapped
to a weighted sum over even subgraphs in some relevant graph G0, then the weighted sum over even
subgraphs in G0 is mapped to the dimer problem (Section 2.3), i.e., a perfect matching on a decorated

graph of G0, which we call Gd. In the following sections we describe these mapping steps.

3.2.1 Ising Problem to Even Subgraphs

As mentioned earlier, the Ising partition function on G can be mapped to a weighted sum over even

subgraphs (Definition 22) in some relevant graph G0. There are two main methods for obtaining the
required mapping: in the first, G0 is the primal model graph G with transformed edge weights; in the
second, G0 is the dual graph G∗ with unmodified edge weights.

Primal Graph Construction

For the sake of simplicity assume that the model graph G is a L × L square lattice with N := L2 spins.
We begin with an important Lemma:

Lemma 21 e±x = cosh(x)(1 ± tanh(x)), ∀x ∈ R.

Proof

RHS = cosh(x)(1 ± tanh(x)) = cosh(x) ± sinh(x)

=
ex + e−x

2
±

ex − e−x

2
= e±x = LHS
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Since sis j = ±1 ∀(i, j) ∈ E, we can apply Lemma 21 to the expression of the partition function (3.4):

Z(β) =
∑
s∈Ω

∏
(i, j)∈E

eβJi j si s j

=
∑
s∈Ω

∏
(i, j)∈E

cosh(βJi j)(1 + sis j tanh(βJi j))

=
∑
s∈Ω

 ∏
(i, j)∈E

cosh(βJi j)
∏

(i, j)∈E

(1 + sis j tanh(βJi j))


=

∏
(i, j)∈E

cosh(βJi j)

∑
s∈Ω

∏
(i, j)∈E

(1 + sis j tanh(βJi j))


∝

∑
s∈Ω

∏
(i, j)∈E

(1 + sis j tanh(βJi j)) (3.7)

Thus we have transformed a sum over e−βH(s) to a sum over polynomials in tanh(βJ) [29, 106]. Expand-
ing the product in (3.7) gives rise to 22N terms of varying order in tanh(βJ). A kth-order term in tanh(βJ)
has a coefficient of the form (si1 s j1 ) . . . (sik s jk ), where each pair appears only once. There is a 1:1 map-
ping by which each kth-order term in tanh(βJ) is associated with the set of k edges {(i1, j1), . . . , (ik, jk)}.
We know that

∑
s=±1

sn =

 2 if n is even
0 if n is odd

(3.8)

Based on (3.8) we can see that only those terms where each si appears an even number of times will
contribute to Z(β) in Equation 3.7, while all other terms will vanish. Diagrammatically this corresponds
to a set of edges {(i1, j1), . . . , (ik, jk)} in which every node i has an even number (0, 2 or 4 in case of a
rectangular grid) of incident edges. We call such a set of edges (and nodes) an even subgraph:

Definition 22 An even subgraph is a subgraph in which every node has an even degree.

Examples of even subgraphs are shown in Figures 3.1 and 3.2(a). While “even subgraph” is a term that
is generally accepted in modern graph theory, many other terms have been used to describe the same
concept: closed polygons [31, 56, 59, 60], closed subgraphs [61], quasi-cycles [3], Eulerian subgraphs

[37] and loops [126].

To summarize, we can map the Ising partition function on G to a weighted sum over even subgraphs
in G0. In this case G0 is the original graph G whose edge weights are w0(i, j) := tanh(βJi j) for edge
(i, j) ∈ E0.

Dual Graph Construction

In the primal graph construction there is no direct correspondence between individual even subgraphs
and spin configurations. An alternative construction is to define G0 to be the dual graph G∗ and use
unmodified weights, i.e., w0(i, j) := −βJi j for edge (i, j) ∈ E0. Every state s of the Ising model induces
a cut in G; this cut is an even subgraph of G∗:
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Definition 23 The cut C of an Ising model G(V,E) induced by state s ∈ {−1, 1}|V| is the set C(s) =
{(i, j) ∈ E : si , s j}.

Figure 3.1 shows a section of a rectangular lattice G (white circles) with its corresponding dual graph
G∗ (red disks). Edges with opposing spins (disagreement edges) correspond to edges of the cut C(s),
which are the edges of the even subgraph in G∗ (bold red).

+ - - -

- - + -

- + + -

- - - -

Figure 3.1: A section of a rectangular lattice G (white circles) with its corresponding dual graph G∗ (red disks).
The spin configuration at each site induces a cut in G, which is an even subgraph in G∗ (bold edges).

Most work on the Ising partition function before the 1980s was primarily concerned with regular
lattices, and it so happens that the dual graph of such lattices is the original lattice. Therefore, it is
not clear whether prior work, such as [61], used the dual construction. The first time the dual graph
is mentioned in relation to the Ising partition function is in Barahona [2]. However, in that work the
correspondence is between sets of unsatisfied edges in G and paths in G∗ joining pairs of frustrated
faces of G (Section 3.3.2). It seems that Globerson and Jaakkola [38] were the first to explicitly use this
dual construction for the Ising partition function (Section 4.3.7). We also use this construction in our
work (see Chapter 5).

3.2.2 Even Subgraphs to Perfect Matchings

The computation on even subgraphs in G0 can be mapped to the dimer problem on a decorated graph
Gd. This mapping can be either direct or complementary, depending on whether edges of an even
subgraph correspond to matched or unmatched edges of the perfect matching of Gd, respectively. Past
approaches also differ in the construction of the decorated graph Gd. The decorated graph Gd is obtained
by replacing every node of G0 with a certain subgraph, called a city.
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Direct Mapping

In the direct mapping, edges of an even subgraph in G0(V0,E0) correspond to matched edges of the
perfect matching of Gd(Vd,Ed). Recall that an even subgraph has an even number of edges incident on
every node of G0. This implies that each city in Gd must have an even number of nodes. With this in
mind, Kasteleyn [60, 61] replaces every node i ∈ V0 with a Kasteleyn city:

Definition 24 A Kasteleyn city of a node i ∈ V0 with degree d is a d-clique if d is even and a (d+1)-
clique if d is odd. This clique contains all original edges of G0, as well as the added edges that are

internal to the clique.

To simplify the description of the mapping, we assume that G0 is a 4-connected rectangular lattice. In
this case, it is sufficient to replace every node i ∈ V0 with a 4-clique. The construction of Gd can be
seen in Figure 3.2(b). We must add extra “dummy” nodes (black disks) to ensure that cities have an
even number of nodes; these nodes do not have an incident original edge.

The direct mapping from even subgraphs in G0 to dimer coverings in Gd is done as follows. With
each edge of an even subgraph in G0 (Figure 3.2(a)) associate a dimer on the original edge in Gd (bold
dimers in Figure 3.2(b)). The remaining unmatched nodes in Gd come in pairs, as there are 4 nodes per
clique with 2 nodes already matched earlier. These pairs of nodes can be matched via dimers on the
internal edges of Gd. If 4 edges of an even subgraph meet (e.g., node 6 in Figure 3.2(a)), then there is
only one way of mapping it to a dimer configuration in Gd (Figure 3.3(a)). This 1:1 correspondence
also holds where 2 edges of an even subgraph meet (Figure 3.3(b)). However, if a node in G0 has no
incident edges of an even subgraph, such as the isolated nodes 1, 11 and 12 in Figure 3.2(a), then there
are 3 ways to map it to a dimer configuration (Figure 3.3(c)).
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(a) (b) (c)

Figure 3.2: (a) An even subgraph (solid edges) of a rectangular lattice G0. (b) The corresponding dimer covering
(solid edges) of the decorated graph Gd derived from G0 with a direct mapping to the even subgraph in (a). Edges of
the even subgraph are shown as bold dimers, while dummy nodes are shown as black disks. (c) The corresponding
dimer covering (solid edges) of the decorated graph Gd with a complementary mapping to the even subgraph in (a).
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(a)

(b)

(c)

Figure 3.3: Correspondence between even subgraphs in G0 (solid edges, left) and dimer configurations in Kaste-
leyn’s decorated graph Gd (right) for nodes incident to (a) 4, (b) 2 and (c) 0 edges of an even subgraph. The
correspondence is 1:1 for (a) and (b), but 1:3 for (c). Edges added to Gd are internal to the cliques, while the
remaining edges in Gd are the original edges from G0.

Complementary Mapping

The direct mapping requires the addition of dummy nodes, which makes it difficult to generalize to
arbitrary graphs. The alternative is to use a complementary mapping, where edges of an even subgraph
in G0(V0,E0) correspond to unmatched edges of the perfect matching of Gd(Vd,Ed). One possible Gd

with a complementary mapping is shown in Figure 3.2(c). Fisher [31] was the first to use a complemen-
tary mapping, aiming to simplify Kasteleyn’s construction by satisfying the following two conditions:

• All even subgraphs of G0 are in 1:1 correspondence with dimer coverings of Gd.

• Gd is a planar graph, so it has a simple Pfaffian orientation described in Section 2.3.4.

Fisher [31] transforms G0(V0,E0) into a decorated graph Gd(Vd,Ed) by replacing every node i ∈ V0

with a Fisher city. The construction is the following:

1. If i ∈ V0 has degree d > 3 then replace it with a chain of (d − 2) vertices of degree 3, as shown in
Figure 3.4(b); otherwise (d ≤ 3) do nothing.

2. Replace every node with a d-clique, where d is the degree of the node, as shown in Figure 3.4(c).

Fisher’s city contains all the original edges of G0, as well as added edges that are internal to the cliques.
This construction plane triangulates G0, which we use in our construction (see Section 5.3.1). The
complementary 1:1 correspondence is constructed as follows: with the presence of an even subgraph
edge in G0, associate the absence of a dimer on the corresponding original edge of Gd. Similarly, with
the absence of an even subgraph edge associate the presence of a dimer. Figure 3.5 shows an example
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of the correspondence for a vertex with degree d = 4 (for vertices with d < 4, see [31]). Notice that Gd

is planar and that the allowed dimer configurations on the internal bonds of Gd are always unique, in
contrast to Kasteleyn’s construction [60].
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Figure 3.4: Fisher’s construction of the decorated graph Gd (c) from the original graph G0 (a). We show the
intermediate step (b) for illustrative purposes only.

Construction of the Kasteleyn Matrix

We now describe how to construct the Kasteleyn matrix to solve the dimer problem on Gd. Let w(i, j) be
the weight of edge (i, j) ∈ Ed if it is an original edge, otherwise (it is an internal edge) set its weight to
w(i, j) := 0. We now give Ed a Pfaffian orientation E′d and use it to obtain a skew-symmetric Kasteleyn
matrix K, whose Pfaffian is equal to the Ising partition function of G [61]. K is defined as:

Ki j :=


+ew(i, j) if (i, j) ∈ E′d
−ew(i, j) if ( j, i) ∈ E′d
0 otherwise

(3.9)

If Gd is constructed using Kasteleyn cities then the correspondence between even subgraphs in G0 and
perfect matchings in Gd is a mixture of 1:1 and 1:3 (see Figure 3.3). Furthermore, Gd is not planar,
meaning that we cannot solve the dimer problem on Gd directly via the Pfaffian method (Section 2.3.4).
Surprisingly however, the combination of non-planarity and lack of 1:1 correspondence for isolated
nodes in G0 does allow us to apply the Pfaffian method successfully. To obtain a Pfaffian orientation of
Gd we give a clockwise-odd orientation to the faces of Gd that contain original edges. We then orient
the remaining internal edges such that the 3 possible dimer configurations in Figure 3.3(c) are counted
correctly as a single configuration (see [31] for more details). The oriented graph for a rectangular grid
is shown in Figure 3.6(b).

3.2.3 Non-Planar Ising Models

Kasteleyn [59] also applied his technique to non-planar graphs, specifically a torus modeled as a rectan-
gular lattice with periodic boundary conditions. The key problem with such graphs is that |K| attaches a
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G0

Gd

Figure 3.5: Correspondence between even subgraphs (solid edges) at a vertex of degree 4 in G0 (top) and dimer
configurations (bold edges) in Fisher’s decorated graph Gd (bottom) (adapted from [31]).

(a) (b)

Figure 3.6: (a) A rectangular lattice G0. (b) Pfaffian orientation of the corresponding Kasteleyn’s decorated graph
Gd (adapted from [61]).

negative sign to even subgraphs that wind around the torus (i.e., cross its periodic boundary, as the blue
and red cycles do in Figure 7.2) an odd number of times. This means that the corresponding perfect
matchings are counted incorrectly. Kasteleyn addressed this problem for a toroidal lattice by calculating
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the partition function as

Z = 1
2

[
− Pf K + Pf h(K) + Pf v(K) + Pf h(v(K))

]
, (3.10)

where h(·) and v(·) switch the sign of entries in K, corresponding to edges crossing the horizontal
and vertical periodic boundary, respectively [59, 102]. Kasteleyn realized that Equation 3.10 could be
generalized to graphs of arbitrary genus g, but deemed this “practically useless” due to the need for
evaluating 4g determinants [61, p. 98]. This must be seen in light of the lack of computing power in the
1960s, and a wish to calculate partition functions for infinite lattices composed of non-planar units, for
which g is unbounded.

Note that h(·) and v(·) preserve the clockwise odd orientation of any underlying graph, as Lemma 18
requires. This raises a troubling question: what distinguishes K, with its negative sign in (3.10), from
h(K) or v(K), which could have arisen from the construction of a different clockwise odd orientation?

Indeed (3.10) is necessary but not sufficient to correctly calculate the partition function for toroidal
lattices. What is missing is a lateral parity condition. The missing condition holds tautologically for
Kasteleyn’s particular construction of a toroidal lattice. A correct generalisation to arbitrary non-planar
graphs was recently provided by Galluccio and Loebl [36]. Fast algorithms for the computation of the
partition function in toroidal lattices and in arbitrary non-planar graphs (with bounded genus), were
given in [107] and [37], respectively.

3.3 Previous Work on the Ground States of the Ising Model

Most previous methods compute the ground state of the Ising model by finding the minimum-weight
perfect matching on a related dual graph. For a long time the computation of the ground state and the
computation of the partition function were treated as two separate problems; Barahona [2] apparently
was the first to use a single construction for both.

3.3.1 Work by Bieche et al

Bieche et al. [9] present an algorithm for the rectangular lattice; here we extend their method to general
planar graphs. Consider a graph G(V,E) where each vertex i is assigned a spin si = ±1 and each edge
e = (i, j) is assigned a weight w(e) := −Ji jsis j, where Ji j is a real number representing the intensity
of the interaction. An edge e is said to be satisfied if it attains its minimal possible weight, i.e., when
w(e) = −|Ji j|. Based on Ji j one can define the set of frustrated cycles:

Definition 25 A frustrated cycle O ⊆ E of a graph G(V,E) with edge weights w is a simple cycle

(Definition 2) whose product of edge weights is negative, i.e.,
∏

(i, j)∈O w(i, j) < 0.

In other words, a cycle is frustrated if it has no edges with zero weight and an odd number of edges with
a negative weight. This means that there is no spin configuration that will satisfy all its edges. From
this notion we can also define a frustrated face (called frustrated plaquette in [9]) to be a frustrated
cycle that is also a face in a given embedding. It seems that the term “frustated face” was introduced by
Toulouse [129]
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The method of Bieche et al. [9] computes the ground state by pairing up the frustrated faces of
G, in such a way that the sum of edge weights along the paths connecting each pair is minimal. This
method was first used by Vannimenus and Toulouse [133] who carried out the computation manually.
Let si j ∈ {−1, 1} be the state of edge (i, j) ∈ E. We begin by initializing si j := 1 (agreement edge) if
Ji j ≥ 0 and si j := −1 (disagreement edge) otherwise. If there are no frustrated cycles then every edge
will be satisfied and we have the ground state, as shown in Figure 3.7. If this is not the case then we
must resolve all frustrated cycles.

- +

-

- -

+

++

+

Figure 3.7: A rectangular lattice with no frustrated faces. Edges with non-negative interaction strength are solid,
while those with negative interaction strength are dashed. The spin configuration of the ground state is shown for
each site.

For convenience we describe the algorithm via the dual graph G∗(F ,E∗). To resolve a frustrated
face f , we need to invert the state of one of its incident edges e = ( f , f ′), which changesH(s) by 2Jese.
However by doing so, we also change the frustration status of face f ′. If f ′ was already frustrated then
we have resolved both f and f ′ in one shot. Otherwise we have to keep inverting edge states of f ′ until
we find another frustrated face to match it up with. We are thus looking for a path of minimum energy
between two frustrated faces. Let Π( fi, f j) ⊆ E∗ be such a path for two frustrated faces fi and f j. The
weight of this path is

w∗(Π( fi, f j)) :=
∑

e∈Π( fi, f j)

−|w(e)|. (3.11)

Bieche et al. [9] solve this by finding the minimum perfect matchingM (Definition 14) of the complete
graph over frustrated faces G f (F f ,E f ). F f is the set of frustrated faces in F , and E f = F f × F f ; the
weight of edge ( fi, f j) ∈ E f is w∗(Π( fi, f j)). Note that this perfect matching will always exist, since the
number of frustrated faces will be even:

Lemma 26 The number of frustrated faces in any planar Ising model is even.

Proof Suppose we have a planar Ising model with si j := 1 ∀(i, j) ∈ E. This model has 0 frustrated
faces. Inverting the state of an edge negates that edge’s weight, which changes the frustration status of
exactly two faces, since in a planar graph each edge belongs to two faces. From the given edge state we
can reach any other edge state via a sequence of edge state inversions.
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To obtain the ground state, for each edge ( fi, f j) ∈ M we invert the state of edges in G crossed by the
path Π( fi, f j). The energy of the ground state is given by

H(s) = −
∑

(i, j)∈E

|Ji j| + 2w(M), (3.12)

where w(M) is the weight of the perfect matching M. For a complete example consider Figure 3.8.
The edges whose state is inverted are those crossed by the bold dual edges in Figure 3.8.
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Figure 3.8: Finding the ground state of a planar graph with frustrated faces. Model graph G with white nodes,
where dashed edges have disagreement cost −2 and solid edges have cost +1. Dual frustration graph G f with blue
nodes, with path weights indicated and the minimum-weight perfect matching M is shown in bold.

The approach of Bieche et al. [9] suffers from two major drawbacks. Firstly, the computation of all
paths of shortest weight in G∗ can be prohibitively expensive. Secondly, G f can be expensive to store
as it is a fully connected graph. Currently treatable rectangular lattices are limited to around 300 × 300
nodes.

3.3.2 Work by Barahona

Barahona [2] constructs the dual graph G∗(F ,E∗) whose edges have weight w∗(e) := −|w(e)|. Since
there is a bijection between E and E∗ we extend the notion of satisfiability: an edge e∗ ∈ E∗ is satisfied

if its corresponding edge in E is satisfied, otherwise it is unsatisfied. A node fi ∈ F is called odd if fi
represents a frustrated face, otherwise it is called even. Odd (even) nodes must be adjacent to an odd
(even) number of unsatisfied edges.

Barahona [2] then constructs a graph G̃ such that there is a 1:1 correspondence between configura-
tions of unsatisfied edges in G∗ and perfect matchings in G̃. To obtain G̃ we first expand G∗ as shown
in Figure 3.4(b). The next stage is to transform all odd vertices as shown in Figure 3.9 (top) and all
even vertices as shown in Figure 3.9 (bottom). All the original edges of G∗ retain their weight, while
the added edges are given zero weight.

Now each configuration of unsatisfied edges in G∗ corresponds to a perfect matching of G̃, as shown
in Figure 3.9. The edges of G∗ that are in the minimum-weight perfect matchingM of G̃ correspond to
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(a) (b)

(c) (d)

Figure 3.9: Correspondence between unsatisfied edges (dashed) in G∗ and perfect matchings (bold) in G̃ for odd
vertices (a and b) and even vertices (c and d) (adapted from [2]).

paths of minimum weight between frustrated faces. To obtain the ground state, we follow Bieche et al.
[9] and invert the state of edges in G crossed by those paths.

The approach of Barahona [2] is preferable to that of Bieche et al. [9] for larger graphs G. This is
because the size of G̃ grows more slowly than the size of G f , and hence the computation of a minimum-
weight perfect matching on G̃ is faster.

3.3.3 Work by Thomas and Middleton

Thomas and Middleton [126] use Kasteleyn cities (Definition 24) to decorate the dual graph G∗ of the
rectangular lattice G. In contrast to Barahona’s construction, the topology of the resulting G∗d does not
depend on the weights of G. The original edges of G retain their weight in G∗d, while newly introduced
edges are given a weight of 0. The minimum-weight perfect matchingM of G∗d has a direct mapping
(Section 3.2.2) to the even subgraph in G∗ with the smallest total weight (see Figure 3.2). Edges of
the even subgraph in G∗ correspond to the set of disagreement edges in G (just rotated by 90◦), i.e., a
minimum-weight cut of G. We can now use Algorithm 1 to obtain the ground state from this minimum-
weight cut. In experiments, Thomas and Middleton [126] found this technique to be about 3 times faster
than the method of Bieche et al. [9], with running times similar to those of the method of Barahona [2].



Chapter 4

Review of Graphical Models

This chapter reviews probabilistic graphical models, which are necessary for understanding the contri-
bution of this thesis. Here we predominantly focus on undirected graphical models. The expression
“graphical model” can mean several things, but the meaning that we use here is the one used in the
statistical machine learning community. In particular, it is a model defined by a graph whose nodes
represent random variables and whose edges represent the possible dependencies between those ran-
dom variables. In Section 4.3 we describe the current state-of-the-art inference methods for undirected
graphical models.

4.1 Introduction

In recent years graphical models have become an invaluable tool in machine learning. Graphical mod-
els have been used with great success in a number of problem domains, ranging from bioinformatics
and natural language processing to computer vision. In computer vision, graphical models have been
applied to image segmentation and object identification, boundary detection, image restoration, texture
modelling, graph matching, stereo reconstruction, digital photomontage, and video segmentation.

A graphical model defines a family of probability distributions that factorize according to an under-
lying model graph. The nodes of the graph correspond to random variables, while its edges represent
statistical dependencies between these variables. Since the probability distribution can be over a large
number of variables, the key idea is to represent it as a product over some local functions (potentials)
each of which depends only on a few of these variables. This allows one to efficiently perform inference:
compute various statistical quantities such as joint, marginal and conditional probability distributions,
as well as maximum a posteriori states. The underlying graph can be directed or undirected. When it
is directed, the model is often called a Belief Network or Bayesian Network, otherwise it is generally
called a Markov Random Field (MRF). In this thesis we are primarily interested in undirected graphical
models.

Graphical models can be parameterised by computing the MRF’s potentials as inner product be-
tween parameters and features. Optimal parameters can be estimated from data (“learned”) according
to a number of criteria, such as regularized maximum likelihood or maximum margin. Once the param-
eters have been learned the MRF can be used to make predictions on unseen data.

31
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4.2 Undirected Graphical Models

An undirected graphical model or MRF is defined over an undirected graph G(V,E) where V =
{1, 2, . . . n} is the set of nodes and E ⊆ V ×V is the set of edges in G. The MRF observes a set of
real-valued input random variables X (features) with domain X and models a set of output random vari-
ables Y with domain Y. Y can be either continuous or discrete, although in this thesis we will assume
that it is always discrete, so Y = {1, . . . ,m}. In particular, to each node i ∈ V we associate an output
random variable Yi, that takes values yi ∈ Y.

In general, we aim to model the joint probability distribution P(Y = y, X = x), although sometimes
it is convenient to model the conditional probability distribution P(Y = y|X = x), like in the case of
Conditional Random Fields (CRFs)[79]. For simplicity, we assume that the inputs X are always given
and so omit them in all subsequent formulae. Furthermore we will write the joint probability distribution
P(Y = y) as P(y), and P(yi) as a shorthand for P(Yi = yi). Let YA denote the vector of output random
variables associated with the set of nodes A ⊆ V and let yA be a particular realization of YA. The
marginal probability distribution for YA is computed as:

P(yA) =
∑
y\yA

P(y). (4.1)

The maximum a posteriori (MAP) assignment y∗ is the state that maximizes the joint probability distri-
bution:

y∗ := argmax
y

P(y). (4.2)

4.2.1 Conditional Independence Property

Conditional independence is an important concept for probability distributions over multiple variables,
and is the building block for efficient inference in graphical models. Let A, B and C be subsets of nodes
inV. A subset of random variables YA is said to be conditionally independent from the subset YC given
YB, iff given that YB is known the knowledge of YC does not add any information to the knowledge of
YA. More formally:

Definition 27 YA is conditionally independent of YC given YB iff P(yA|yB, yC) = P(yA|yB) ∀yA, yB, yC .

We will write this as (YA y YC) | YB.

As an example, consider a football tournament. Given that we know the current league table, the
knowledge of previous match outcomes does not help us in determining the current ranking of a
team. So we have (team ranking y match outcomes) | league table. If (YA y YC) | YB then we have
P(yA, yC |yB) = P(yA|yB)P(yC |yB).

An important and elegant feature of graphical models is that conditional independence properties of
the joint probability distribution can be read directly from the underlying graph. In directed graphical
models these properties can be deduced by using the concept of d-separation [99]. In undirected graph-
ical models, (YA y YC) | YB is true iff every path from any node in A to any node in C passes through at
least one node in B; all such paths are then said to be blocked by B.
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4.2.2 Factorization Property

Let K be the set of maximal cliques (Definition 1) of the model graph G. A potential function ψC of a
clique C ∈ K is a function that associates a positive real number to every assignment of labels of nodes
in C. The joint probability distribution can be written as a product of potential functions ψC(yC) over
the maximal cliques:

P(y) =
1
Z

∏
C∈K

ψC(yC), where Z :=
∑

y

∏
C∈K

ψC(yC) (4.3)

is the partition function which ensures that P(y) is correctly normalized. The presence of this normaliza-
tion constant is one of the major limitations of undirected graphical models, because its naive evaluation
involves summing over |Y||V| states. The partition function is needed for maximum-likelihood param-
eter estimation, but not for computing the MAP states or maximum margin parameter estimation. The
positivity of ψC(yC) ensures that P(y) is non-negative. To make ψC(yC) strictly positive it is often
convenient to express it as an exponential function:

ψC(yC) := exp (−E(yC)), (4.4)

where E(yC) is the energy function of the clique C. The energy function of the joint probability dis-
tribution can be written as E(y) =

∑
C∈K E(yC), which allows us to conveniently rewrite Equation 4.3

as

P(y) =
1
Z

exp

−∑
C∈K

E(yC)

 = 1
Z

e−E(y). (4.5)

Using the fact that P(y) ∝ exp(−E(y)), we can rewrite the MAP definition (4.2), so that it matches the
definition (3.6) of a ground state of an Ising model:

y∗ = argmax
y

e−E(y) = argmin
y

E(y). (4.6)

The true power of graphical models comes from the fact that the conditional independence property
implies the factorization property and vice-versa, as stated by the Hammersley-Clifford theorem [7, 44]:

Theorem 28 (Hammersley-Clifford Theorem) Any strictly positive probability distribution which is

consistent with the conditional independence properties imposed by a graph G also factorizes with

respect to G.

This theorem tells us that any strictly positive probability distribution that respects the conditional inde-
pendence properties of some graph G can be factorized as a product over functions ψ, which are local
in that each only involves the nodes of one maximal clique of G.
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4.3 Inference Algorithms

For a general undirected graphical model the inference task is NP-hard. However, efficient algorithms
exist for certain types of models. The complexity of inference is governed by the following factors:
graph structure, form of the energy function and the number of output labels. In this section we will
present the most popular algorithms used for inference in undirected graphical models. Variable elimi-
nation (Section 4.3.1) is an exact algorithm for small model graphs. Loopy Belief Propagation (Section
4.3.3) is a commonly-used approximate inference method, which is exact for trees. Its cousin, the
Junction Tree algorithm (Section 4.3.4), is an exact inference method for “thin” graphs or graphs with
small treewidth. Graph cuts (Section 4.3.5) are an exact inference method for models with submodular

energy functions (Definition 31) and binary labels. Tree Reweighting (Section 4.3.6) is an approximate
inference method that often outperforms standard Loopy Belief Propagation and has better convergence
guarantees.

4.3.1 Variable Elimination

Suppose we want to evaluate the marginal probability distribution P(yi) on a graph with n nodes. We
can find P(yi) by marginalizing out all the random variables in the joint probability distribution P(y) that
are not yi:

P(yi) =
1
Z

∑
y\{yi}

P(y) (4.7)

=
1
Z

∑
y1

. . .
∑
yi−1

∑
yi+1

. . .
∑
yn

P(Y1 = y1, . . . ,Yn = yn). (4.8)

Naively, we could fist evaluate the joint probability distribution for all possible configurations and then
perform all the summations. If each variable has m states then we will need O(mn) space to store the
joint probability distribution, followed by mn summations.

We can obtain a much more efficient algorithm by exploiting the conditional independence proper-
ties of the graphical model. If we substitute Equation 4.3 for P(y), then we can reorder the summations
and multiplications to minimize the total number of computations. The method is best demonstrated
with an example. Consider the tree in Figure 4.1(a), for which we want to compute P(y5). Based on the
factorization properties we can write the computation as

P(y5) =
1
Z

∑
y1

∑
y2

∑
y3

∑
y4

ψ12(y12)ψ23(y23)ψ34(y34)ψ35(y35). (4.9)

We notice that y1 participates in just one term, so it makes sense to sum over y1 first. After we have
summed over (or eliminated) y1, we can sum over the remaining variables. Again we will choose to
eliminate a variable that occurs in the least number of terms. We continue this process until all variables
have been eliminated. We can now rewrite Equation 4.9:

P(y5) =
1
Z

∑
y3

ψ35(y35)
∑
y4

ψ34(y34)
∑
y2

ψ23(y23)
∑
y1

ψ12(y12). (4.10)
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In the above we are exploiting the fact that multiplication is distributive over addition, so in

ab + ac = a(b + c), (4.11)

the right-hand-side is preferable as it requires only 2 operations, compared to the 3 operations (2 mul-
tiplications and one addition) required by the left-hand-side. The resulting term of

∑
yi ψi j(yi j) is a

function of j, which for convenience we will write as mi j(y j). The index i refers to the variable being
summed over, while the index j refers to other variables appearing in the summand. Note that for trees,
there is never more than two variables in the summand, since trees have a maximum clique size of 2.
We continue the derivation using the new notation:

P(y5) =
1
Z

∑
y3

ψ35(y35)
∑
y4

ψ34(y34)
∑
y2

ψ23(y23)m12(y2) (4.12)

=
1
Z

∑
y3

ψ35(y35)
∑
y4

ψ34(y34)m23(y3)

=
1
Z

∑
y3

ψ35(y35)m23(y3)
∑
y4

ψ34(y34)

=
1
Z

∑
y3

ψ35(y35)m23(y3)m43(y3)

=
1
Z

m35(y5).

The final expression is a function of y5 only, and thus is the desired marginal. This algorithm is usually
called variable elimination as the variables are eliminated one by one.

4.3.2 Belief Propagation

In many problems we would like to compute more than a single marginal probability. For example in
Figure 4.1(a) we might want to obtain both P(y4) and P(y5). We could compute each marginal separately
using variable elimination, but wouldend up computing same mi j(y j) twice, such as m12(y2) and m23(y3).

Belief Propagation (aka the sum-product algorithm) [99] is a method that efficiently computes all the
possible mi j(y j), thus allowing reuse of intermediate results for multiple computations. The intermediate
term mi j(y j) can be viewed as a “message” that is passed from node i to node j about what state node j

should be in, written as:

mi j(y j) :=
∑
Yi

ψi j(yi j)
∏

k∈N(i)\ j

mki(yi), (4.13)

where N(i) is the set of neighbours of node i. Node i can send a message to a neighbouring node j once it
has received all the incoming messages from its neighbours (except from node j). This set of incoming
messages is computed as

∏
k∈N(i)\ j mki(yi) in Equation 4.13. Since leaf nodes have only one neighbour,

they can start sending messages straight away. Belief propagation proceeds by propagating messages
from the leaves to the root. The algorithm terminates once a message has been sent along each edge in
both directions. It can be shown that belief propagation always converges to the optimum solution for
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Figure 4.1: An undirected graphical model whose underlying graph is a tree. (a) Shows the intermediate messages
that arise during variable elimination with elimination order: y1, y2, y4, y3. (b) Shows the set of all messages
computed by the belief propagation algorithm.

trees. Figure 4.1(b) shows the set of messages needed to compute every individual marginal probability.
Ignoring normalization terms, the final marginal probability at a node i is given by the product of all its
incoming messages:

P(yi) ∝
∏

k∈N(i)

mki(yi). (4.14)

The sum-product algorithm can be easily modified to compute the probability of the MAP state. The
idea is to use Equation 4.13, replacing every instance of

∑
operator with the max operator. This works,

since maximization commutes with products, just as summation does, i.e., max(ab, ac) = a max(b, c).
The resulting algorithm is called the max-product algorithm. In practice, products of many small prob-
abilities can lead to numerical underflow problems. These problems can be avoided if one computes the
logarithm of the joint probability distribution. Since the logarithm is a monotonic function, we can write
argmaxy log(P(y)) = argmaxy P(y). This has the effect of replacing the products in the max-product al-
gorithm with sums. This is called the max-sum algorithm.

4.3.3 Loopy Belief Propagation

It can be shown that belief propagation obtains the optimum solution for graphs containing a single
loop. For general graphs, however, belief propagation is not guaranteed to converge to the optimum
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solution. Loosely speaking, this is because general graphs may contain numerous loops and thus the
same evidence can be passed around multiple times and mistaken for new evidence. Despite the lack of
formal convergence guarantees, belief propagation is still widely used for general graphs, such as grids.
In this case the method is called Loopy Belief Propagation [34, 137, 143].

From Section 4.3.2, we have seen that a node can pass messages once it has received messages from
all its neighbours. Since there can be loops in the graph, we need to decide how to initiate the message
passing algorithm. One possibility is to send an initial message given by the unit function across every
edge in every direction. Now each node is in a position to start sending messages. We also have that
mi j(y j) can be computed multiple times for the same i and j. Let us assume that mi j(y j) sent at time t

replaces any previously sent mi j(y j).

There are numerous ways to define a message passing schedule: e.g., flooding schedule passes a
message across every edge in both directions at every time step, while a serial schedule passes one
message at a time. Kschischang et al. [75] describes one such serial schedule. Node i has a message
pending to node j if node i has received any message since the last time it sent anything to node j.
Only pending messages need to be transmitted, because all other messages would duplicate previously
sent messages. The algorithm proceeds by sending all pending messages one by one. For trees this
will terminate once a message has passed in each direction of each edge. For graphs with loops this
might never terminate. Once the algorithm has terminated (due to convergence or otherwise), the final
marginal of node i is computed as a product of the most recently received messages to node i. Note that
this marginal is only an approximation of the true marginal.

4.3.4 Junction Tree Algorithm

Belief propagation can be generalised to general graphs, giving an exact inference method known as
the Junction Tree algorithm [81]. The idea is to construct a tree-based data structure, called a junction

tree, whose nodes are cliques of the original graph. Belief propagation can then be used to compute
exact results on this tree. There are several inference algorithms available [83]: Hugin, Shenoy-Shafer
and Lauritzen-Spiegelhalter. However, all these algorithms perform exact inference and only differ in
computational speed. Below we will describe the Shenoy-Shafer algorithm [114, 115, 116]. If the
original graph is directed then we must first make it undirected via a method called moralization. The
first step in constructing the junction tree involves transforming the model graph G(V,E) into a chordal

graph Gc(V,Ec):

Definition 29 A graph is chordal if each of its cycles of four or more nodes has a chord. A chord in a

cycle is an edge joining two nodes that are not adjacent in that cycle.

We can construct Gc by adding edges to G. An example of a chordal graph is shown in Figure 5.6(a).
We can now construct the junction tree:

Definition 30 The junction tree T (K ,E′) of an undirected chordal graph Gc is a tree, whose every node

i ∈ K corresponds to a maximal clique of Gc. The edges E′ satisfy the running intersection property:
for any edge (i, k) = (Ci,Ck) ∈ E′, the variables in the intersection i ∩ k are contained in every node of

the tree on the unique path between i and k.
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The junction tree is maximal in the sense that the number of variables shared by its two connected nodes
is maximal. Each maximal clique in Gc is associated with exactly one node in T . We set the potential
of a clique C to the product of potentials of its sub-cliques:

ψC(yC) :=
∏

Ci⊂C

ψCi (yCi ). (4.15)

Instead of sending messages between nodes (4.13), we now send messages between cliques. A message
from clique Ci to C j is given as

mCiC j (yCi j ) :=
∑

Ci\Ci j

ψCi (yCi )
∏

Ck∈N(Ci)\C j

mCkCi (yCki ), (4.16)

where Ci j := Ci ∩C j and N(Ci) are the neighbours of clique Ci in the junction tree. Similar to Equation
4.14, we can compute the marginal probability of a clique Ci as a product of all its incoming messages:

P(yCi ) ∝
∏

Ck∈N(Ci)

mCkCi (yCki ). (4.17)

Finally, we can obtain the marginal probability for an individual node yi in clique C:

P(yi) =
∑
C\i

P(yC). (4.18)

Once again the problem of computing the probability of the MAP state can be solved by replacing
∑

with max. Since the junction tree algorithm works with joint probability distributions of nodes in each
clique, its computational complexity is exponential in the number of nodes in its largest clique. This
number is closely related to the treewidth of a graph G, which is defined as one less than the size of the
maximal clique in any chordal graph containing G. Thus the complexity of the junction tree algorithm
is exponential in the treewidth of its underlying graph. The treewidth of a tree is 1, while the treewidth
of an n × n grid is n.

4.3.5 Graph Cuts

The widespread use of graph cuts to find lowest-energy configurations, particularly in computer vision,
was pioneered by Greig et al. [41]. Given an undirected graphical model with graph G(V,E), the
algorithm aims to minimize the following real-valued energy function

E(y) :=
∑
i∈V

Ei(yi) +
∑

(i, j)∈E

Ei j(yi, y j), (4.19)

where y = {y1, . . . , y|V|} is the set of node labels, Ei(yi) is the cost of assigning node i to label yi, and
Ei j(yi, y j) is the cost of assigning the adjacent nodes i and j to the labels yi and y j, respectively. In
general this problem is NP-hard, but is tractable for binary-labeled models with a submodular energy
function E:

Definition 31 A function E of the form (4.19) is submodular iff each term Ei j satisfies the inequality:
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Ei j(0, 0) + Ei j(1, 1) ≤ Ei j(0, 1) + Ei j(1, 0).

For the purpose of the following discussion, we assume that the above conditions hold. The graph cut
algorithm constructs a directed graph G′(V′,E′) such that the weight of its minimum s-t cut corresponds
to the global minimum of E [70].

Definition 32 An s-t cut C(S ,T ) of a directed graph G′(V′,E′) is a partition of vertices V′ into two

disjoint sets S and T , such that s ∈ S and t ∈ T. The weight of the s-t cut w(C(S ,T )) is the sum of

weights of boundary edges (p, q) ∈ E′, where p ∈ S and q ∈ T.

The minimum s-t cut is an s-t cut with the smallest weight. Every s-t cut partitions the nodes into two
sets S and T . Those nodes that are in S are labeled 0, while the remaining nodes are labeled 1. Due to
the theorem of Ford and Fulkerson [32], the minimum s-t cut is equivalent to the maximum flow from s
to t. By construction, all edges of E′ are non-negative, thus the maximum flow of G′ can be computed
in polynomial time, and hence also its minimum s-t cut. G′ is constructed from G as follows:

1. Add 2 extra terminal vertices s (source) and t (sink). Thus we haveV′ := {s, t, 1, . . . , |V|}.

2. For each node cost Ei(yi) we add an edge from node i to one of the terminal nodes. If Ei(1) > Ei(0)
then we add the edge (s, i) with the weight Ei(1) − Ei(0). Otherwise, we add the edge (i, t) with
the weight Ei(0) − Ei(1) (Figure 4.2(a)).

3. For each edge cost Ei j(yi, y j) we add an edge (i, j) with weight Ei j(0, 1) + Ei j(1, 0) − Ei j(0, 0) −
Ei j(1, 1) ≥ 0. If Ei j(1, 0) > Ei j(0, 0) then we add a weight of Ei j(1, 0) − Ei j(0, 0) to edge (s, i),
otherwise we add a weight of Ei j(0, 0)− Ei j(1, 0) to edge (i, t). If Ei j(1, 0) > Ei j(1, 1) then we add
a weight of Ei j(1, 0)− Ei j(1, 1) to edge ( j, t), otherwise we add a weight of Ei j(1, 1)− Ei j(1, 0) to
edge (s, j). Figure 4.2(b) shows the graph for Ei j(yi, y j) for the case when Ei j(1, 0) > Ei j(0, 0)
and Ei j(1, 0) > Ei j(1, 1).

A more elaborate construction can give partial answers for non-submodular energy functions, i.e.,

graphs with some negative edge weights [43, 68, 105]. Furthermore, a sequence of expansion moves

(energy minimizations in binary graphs) can efficiently yield an approximate answer for graphs with
discrete but non-binary node labels [12].

4.3.6 Tree Reweighting

Given an undirected graphical model with graph G(V,E), Wainwright et al. [136] compute the MAP
energy by maximizing a concave lower bound derived from a convex combination of tree-structured
distributions. Let us assume that every E(yC) decomposes into a product of parameters θC and sufficient

statistics φC(yC). We can now write E(y, θ) = 〈θ, φ(y)〉, where θ is the set of all parameters and
φ(y) is the set of all sufficient statistics. The energy of the optimal configuration y∗ can be written as
E(y∗, θ) = minθ E(y, θ).

Let T be the set of spanning trees of G, such that each edge appears in at least one tree. Let
T ∈ T be one of the spanning trees and θ(T ) be its set of parameters. Let θ̃ be a concatenation of
all such parameter sets θ(T ). We associate a weight p(T ) with every tree T , such that p(T ) ≥ 0 and
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Figure 4.2: Graph cut construction of G′ for node i (a) and edge (i, j) (b).

∑
T∈T p(T ) = 1. If we set θ(T ) such that

∑
T p(T )θ(T ) = θ then applying Jensen’s inequality yields the

lower bound

E(y∗, θ) ≥
∑
T∈T

p(T )E(y∗, θ(T )). (4.20)

This means that we can compute a lower bound on E(y∗, θ) via a convex sum of ground energies of
individual trees, which can be found exactly. It turns out that equality in Equation 4.20 holds if the
collection of trees share a common optimum. This is known as the tree agreement property. Wainwright
et al. [136] aim to find the tightest lower bound of the form (4.20). The problem is first posed as a linear
programming (LP) relaxation in the primal:

max
θ̃

∑
T∈T

p(T )E(y∗, θ(T )) (4.21)

such that
∑
T∈T

p(T )θ(T ) = θ.

Specialized versions of this LP relaxation were formulated earlier in [16, 73, 108]. For a general
distribution of trees, the primal problem (4.21) entails maximizing a sum of functions over all spanning
trees of the graph, which can be a prohibitively large collection. Although this LP relaxation can be
solved in polynomial time using interior-point methods, due to their large memory requirements the
current state of the art software can only handle instances of a few hundred variables. For example,
Meltzer et al. [90] report that the largest grid they could solve with such a method is only 39 × 39.
Luckily the primal can be solved via its Lagrangian dual. This involves iterating over a relatively simple
local consistency polytope LOCAL(G). In particular, LOCAL(G) can be characterized by O(m|V| +
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m2|E|) constraints, where m is the number of possible label assignments per node. A nice consequence
of this duality is the fact that the optimal solution does not depend on the choice of trees and their
probabilities, provided that each edge appears in T .

For solving the dual problem on LOCAL(G) Wainwright et al. [136] propose two max-product tree-
reweighted message passing algorithms (TRW): edge-based updates (TRW-E) and tree-based updates
(TRW-T). TRW-T iterates between two phases: a) running max-product for all trees and b) performing
averaging operations for all nodes and edges. TRW-E is similar, except that in phase a) it performs
one parallel message update for all trees. The algorithms reduce to the ordinary max-product algorithm
when applied to trees. Kolmogorov [66] shows that TRW-T and TRW-E can sometimes increase the
lower bound and so do not guarantee convergence. He introduces a sequential update algorithm TRW-
S which guarantees that the value of the lower bound does not decrease and converges to a solution
that satisfies the weak tree agreement criterion (WTA) [66]. Although his experiments suggest that this
can produce high-energy solutions for non-submodular energy functions. Kolmogorov [66] also intro-
duces BP-S — ordinary max-product belief propagation algorithm with the same sequential schedule of
updating messages as TRW-S.

Kolmogorov and Wainwright [69] show that tree-reweighted message passing is guaranteed to ob-
tain the global optimum for submodular energy functions with binary variables.

4.3.7 Work by Globerson and Jaakkola

Globerson and Jaakkola [38] follow TRW’s approach and compute a lower bound of the partition func-
tion by decomposing the model graph into disjoint planar subgraphs. They adopt and simplify the
classical constructions of Kasteleyn [59, 60, 61] and Fisher [30, 31] to perform exact computation of
the partition function (and marginals) for each planar subgraph. The model graph is first plane trian-

gulated (Definition 40) and then used to construct the dual graph G∗. Since G is plane triangulated, all
vertices in G∗ have degree 3, which is convenient for the next step of constructing the terminal graph
GT∗ of G∗. The original edges of G∗ (and G) retain their weight in GT∗, while the introduced edges are
given a weight of e0 = 1. As shown by Fisher [31], there is now a 1:1 correspondence between perfect
matchings in GT∗ and configurations of even subgraphs in G. Now the partition function of G can be
computed as a sum over the weights of perfect matchings in GT∗ (Section 2.3.4). GT∗ is given a Pfaffian
orientation, from which the Kasteleyn matrix is constructed. The partition function of the model graph
is then computed via the determinant of the Kasteleyn matrix. If R is the set of disjoint planar subgraphs
of G then the lower bound of the log-partition function is given as

log Z(θ) ≤
∑
R∈R

p(R) log Z(θ(R)). (4.22)

Our work is based on [38], although it simplifies it in a number of important ways. Our method does
not require the construction of the expanded dual graph as everything is done in the model graph. Also,
we break the construction of the Kasteleyn matrix into two phases, the first of which is invariant with
respect to the model’s disagreement costs. Further details are discussed in the next chapter.
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Chapter 5

Planar Ising Graphical Models:
Inference

In this chapter we introduce the Ising graphical model. This is an undirected graphical model that
obeys the constraints of the Ising model, i.e., a binary-labeled energy function that is a sum of edge
disagreement costs. Here we focus on the planar Ising graphical model, while in Chapter 7 we will look
at its extensions to non-planar graphs. For the planar model we give polynomial-time algorithms for
the exact computation of MAP (ground) states, log partition function and marginal edge probabilities.
Our approach provides an interesting alternative to the well-known graph cut paradigm in that it does
not impose any submodularity constraints. Instead, we require planarity to establish a correspondence
with perfect matchings in an expanded dual graph. We describe a unified framework, while delegating
complex but well-understood subproblems (planar embedding, maximum-weight perfect matching) to
established algorithms, for which efficient implementations are freely available.

In Section 5.1 we show that an Ising model with an additional bias node can express any arbitrary
binary energy function. In Section 5.1.2 we explain the planarity requirement and how it is affected
by this additional bias node. In Section 5.1.4 we show that inference in a general planar graph can be
broken down into inference in each of its biconnected components. Section 5.2 describes the expanded
dual graph (Section 5.2.1), and how it is used for computing the MAP state‘ of the model graph. In
Section 5.2.2 we give the precise complementary connection between graph cuts of the model graph
and perfect matchings of the expanded dual. We explain the role of planarity (resp. triangulation) in
making that relation a surjection (resp. bijection). In Section 5.3 we deal with the calculation of the
partition function and marginal probabilities. By using a particular indexing scheme (Section 5.3.3) we
construct a correspondence between the edges of the model graph and those of its expanded dual. This
is simpler than earlier work, as it eliminates the need to construct the expanded dual graph. In Section
5.3.3 we introduce the “proto-Kasteleyn” matrix H, which can be efficiently stored as a prefactored
bit matrix and reused in the parameter estimation loop. We show how to prefactor Kasteleyn matrices
(Section 5.3.4), which reduces storage and speeds up computation of marginal probabilities. In Chapter
6 we apply all of the above algorithms to real examples of machine learning problems.

43
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Figure 5.1: Constructive proof of Theorem 33: conversion of general energy (5.3) into Ising energy (5.1) via
addition of a bias node. (a) shows the change in node energy E′i . (b) shows the change in edge energy E′i j. (c) our
construction of an equivalent submodular model for Ei j > 0, E0i > 0 and E0 j < 0. (d) equivalent directed model of
Kolmogorov and Zabih [70, Figure 2d].

5.1 Introduction

The Ising Graphical Model is a binary graphical model defined on an undirected graph G(V,E) whose
energy function takes the form E : {0, 1}|E| → R with

E(y) :=
∑

(i, j)∈E

Jyi , y jK Ei j, (5.1)

where J·K denotes the indicator function, i.e., the disagreement cost Ei j is incurred only in those states
where yi and y j disagree. The joint probability distribution of an Ising graphical model is the same as
that of a MRF (4.5):

P(y) = 1
Z e−E(y), where Z :=

∑
y

e−E(y) (5.2)

is the partition function. Recall that the energy function (4.19) of a general graphical model has the
form

E′(y) :=
∑
i∈V

E′i (yi) +
∑

(i, j)∈E

E′i j(yi, y j). (5.3)

Compared to this general energy function, (5.1) with binary node labels imposes two additional restric-
tions: zero node energies, and edge energies in the form of disagreement costs. At first glance these
constraints look severe. For example, such systems must obey the label symmetry E(y) = E(¬ y), where
¬ denotes Boolean negation (ones’ complement). However, Globerson and Jaakkola [38] suggested that
adding a single node makes the Ising model (5.1) as expressive as the general model (5.3) for binary
variables. Here we provide a formal proof:

Theorem 33 Every energy function of the form (5.3) over n binary variables is equivalent to an Ising

energy function of the form (5.1) over n + 1 variables, with the additional variable held constant.
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Proof We will prove this theorem by construction. Two energy functions are equivalent if they differ
only by a constant. Without loss of generality, we add an extra bias variable y0 and hold it constant at
y0 := 0. Given an energy function of the form (5.3), we construct an Ising model with disagreement
costs as follows:

1. For each node energy function E′i (yi), add a disagreement cost of E0i := E′i (1) − E′i (0), as shown
in Figure 5.1(a). E0i refers to the disagreement cost of the edge between node i and the bias node.
Note that in both states of yi, the energy of the resulting Ising model is shifted relative to E′i (yi)
by the same constant amount, namely E′i (0):

yi General energy (5.3) Ising energy (5.1)

0 E′i (0) 0 = E′i (0) − E′i (0)
1 E′i (1) E0i = E′i (1) − E′i (0)

2. For each edge energy function E′i j(yi, y j), add the three disagreement cost terms

Ei j := 1
2 (E′i j(0, 1) + E′i j(1, 0) − E′i j(0, 0) − E′i j(1, 1))

E0i := E′i j(1, 0) − E′i j(0, 0) − Ei j (5.4)

E0 j := E′i j(0, 1) − E′i j(0, 0) − Ei j,

as shown in Figure 5.1(b). Note that for all states of yi and y j, the energy of the resulting Ising
model is shifted relative to E′i (yi) by the same constant amount, namely E′i j(0, 0):

yi y j General energy (5.3) Ising energy (5.1)

0 0 E′i j(0, 0) 0 = E′i j(0, 0) − E′i j(0, 0)

0 1 E′i j(0, 1) E0 j + Ei j = E′i j(0, 1) − E′i j(0, 0)

1 0 E′i j(1, 0) E0i + Ei j = E′i j(1, 0) − E′i j(0, 0)

1 1 E′i j(1, 1) E0i + E0 j = E′i j(1, 1) − E′i j(0, 0)

Summing the above terms gives us the bias of node i, i.e., its disagreement cost with the bias node

E0i = E′i (1) − E′i (0) +
∑

j:(i, j)∈E

E′i j(1, 0) − E′i j(0, 0) − Ei j, (5.5)

where the sum iterates over all nodes j connected to nodes i. This construction defines an Ising model
whose energy in every configuration y is shifted, relative to that of the general model we started with,
by the same constant amount, namely E′(0):

E([y, y0]) = E′(y) −
∑
i∈V

E′i (0) −
∑

(i, j)∈E

E′i j(0, 0)

= E′(y) − E′(0), (5.6)

where [y, y0] denotes y0 appended to the state y. The energy functions of the two models are therefore
equivalent.
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Note how in the above construction, the label symmetry E(y) = E(¬ y) of the Ising energy function
(5.1) is conveniently broken by the introduction of a bias node, through the convention that y0 := 0.

5.1.1 Energy Minimization via Cuts

In Section 4.3.5 we have seen that the minimum s-t cut of a directed graph can be used to compute the
MAP state for a binary graphical model with a submodular energy function. We will now show that the
MAP state of an Ising graphical model induces the minimum cut of its model graph:

Definition 34 The cut C of a binary undirected graphical model G(V,E) induced by state y ∈ {0, 1}n is

the set C(y) = {(i, j) ∈ E : yi , y j}; its weight w(C(y)) is the sum of the weights of its edges.

Any given state y partitions the nodes of a binary graphical model into two sets: those labeled ‘0’,
and those labeled ‘1’. The corresponding graph cut is the set of edges crossing the partition. Since
only these edges contribute disagreement costs to the energy of an Ising graphical model (5.1), we
have w(C(y)) = E(y) ∀y. Therefore the lowest-energy state of an Ising graphical model induces its
minimum-weight cut. Conversely, the ground state of an Ising graphical model can be determined from
its minimum-weight cut via a graph traversal, such as our depth-first-search shown in Algorithm 1.4

Algorithm 1 labels nodes as it encounters them, and checks for consistency on subsequent encounters.
The traversal starts by labeling the bias node with its known state y0 = 0.

We note that there is a bijection between states and their induced cuts. In particular, each state y
induces a cut C(y) and from each cut Cwe can derive (up to label symmetry) the corresposponding node
state y. Thus we have that for all y the following holds: P(C(y)) = P(y). Finally, the label symmetry
can be broken by conditioning on any node k:

P(C(y)) = P(y|yk). (5.7)

Algorithm 1 Find State from Corresponding Cut

Input: embedded model graph G(V,E), cut C(y) ⊆ E
1. ∀ i ∈ {0, 1, 2, . . . n} : yi = unknown
2. dfs state(0, 0)

Output: state vector y

procedure dfs state(i ∈ {0, 1, 2, . . . n}, s ∈ {0, 1})
if yi := unknown then

1. yi := s
2. ∀(i, j) ∈ Ei: (edges incident to node i)

if (i, j) ∈ C then
dfs state( j,¬s)

else dfs state( j, s)
else if yi , s then throw error

4The recursion used in Algorithm 1 is for illustrative purposes only, since in practice such an implementation would rapidly
run out of stack space. Our implementation of Algorithm 1 uses an iterative breadth-first-search.
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Minimum-weight cuts can be computed in polynomial time in graphs whose edge weights are all
non-negative. We can construct an energy function equivalent to (5.1):

• Introduce one more bias node, with the constraint yn+1 := 1.

• Replace each negatively weighted bias edge E0i < 0 by an edge to the new node n + 1 with the
positive weight Ei,n+1 := −E0i > 0 (Figure 5.1(c)).

This still leaves us with the requirement that all non-bias edges be non-negative. This submodularity

constraint (Definition 31) implies that agreement between nodes must be locally preferable to disagree-
ment — a severe limitation.

Our construction (Figure 5.1(c)) differs from that of Kolmogorov and Zabih [70] (Figure 5.1(d)) in
that we only use undirected edges. It may thus be possible to use edge direction for other purposes,
such as representing a directed graphical model.

5.1.2 Planarity Constraint

Unlike graph cut methods, the exact inference algorithms we will describe do not depend on submodu-
larity. Instead they require that the model graph is planar (see Definition 6 and Figure 5.2(b)), and that
a planar embedding is provided (Definition 10).

In certain domains (e.g., when working with geographic information) a plane drawing of the graph
may be available, from which the corresponding embedding is readily determined. Where it is not,
we employ the algorithm of Boyer and Myrvold [11]. Given a connected graph G, this linear-time
algorithm produces either a planar embedding for G or a proof that G is non-planar. Source code for
this step is freely available [11, 139].

In Section 5.1 we have mapped the energy of a general binary graphical model (5.3) to the energy
of a Ising graphical model (5.1) via the addition of a bias node. Now that we require that the Ising
graphical model is planar, what does that imply for the original general model? If all nodes of the graph
are to be connected to the bias node without violating planarity, the graph has to be outerplanar, i.e.,

have a planar embedding in which all its nodes lie on the external face — a very severe restriction (see
Figure 5.2(a)).

The situation improves, however, if we do not insist that all nodes are connected to the bias. If only
a subset B ⊂ V of nodes have non-zero bias (5.5), then the graph only needs to be B-outerplanar, i.e.,

have a planar embedding in which all nodes in B lie on the same (external) face. Model selection may
thus entail the step of picking the face of a suitably embedded planar Ising graphical model whose nodes
will be connected to the bias node. In image processing, for instance, where it is common to operate on
a square grid of pixels, we can permit bias for all nodes on the perimeter of the grid, which borders the
external face. We will refer to this as perimeter bias.

For each node i, we can assign a particular weight that measures how “important” it is to include that
node’s bias (5.5). This weight can be the magnitude or square of E0i. In general, a planar embedding
which maximizes a weighted sum over the nodes bordering a given face can be found in linear time
[42]; by setting node weights to some measure of their bias, such as the magnitude or square of E0i

(5.5), we can thus efficiently obtain the planar Ising model closest (in that measure) to any given planar
binary graphical model.
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In contrast to submodularity, B-outerplanarity is a structural constraint. This has the advantage that
once a model obeying the constraint is selected, inference (e.g., parameter estimation) can proceed via
unconstrained methods (e.g., optimization).

It must be noted that all our exact algorithms can be extended to work exactly for non-planar graphs
as well. In that case they take time exponential in the genus of the embedding though still polynomial in
the size of the graph (Equation 3.10). Finally, in Chapter 7 we develop efficient approximate inference
algorithms for non-planar graphs, such as the one shown in Figure 5.2(c).

(a) (b) (c)

Figure 5.2: (a) outerplanar graph. (b) planar graph. (c) non-planar graph.

5.1.3 Connectivity

All algorithms in this thesis require that the model graph G is connected (Definition 4). Where this is not
the case, we can simply determine the connected components (Definition 3) of G in linear time [47], then
invoke the algorithm in question separately on each of them. Since each component is unconditionally
independent of all others (as they have no edges between them), the results can be trivially combined:

• G is planar iff all of its connected components are planar. Any concatenation of a planar embed-
ding for each connected component is a planar embedding of G.

• Any concatenation of a ground state for each connected component of G is a ground state of G.

• The edge marginal probabilities of G are the concatenation of edge marginal probabilities of its
connected components.

• The log partition function of G is the sum of the log partition functions of its connected compo-
nents.

5.1.4 Biconnectivity

Although the algorithms in this thesis do not require the model graph G to be biconnected (Definition
5), simpler and more efficient alternatives are applicable when this is the case.

As Figure 5.3 illustrates, any planar graph G can be decomposed into a tree of edge-disjoint bi-
connected components which overlap in the articulation vertices they share (Definitions 3, 5). This
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(a) (b)

(c) (d)

Figure 5.3: Skeletal chemical structure of (a) phosphorus trioxide (b) nitroglycerine and (c) quinine (courtesy
of Wikipedia). Biconnected components are shown with shaded ovals. Trivial biconnected components are red,
while nontrivial biconnected components are blue. Phosphorous trioxide is biconnected (i.e., all one component).
Nitroglycerine is a tree, i.e., has only trivial biconnected components. Quinine is a general graph, i.e., has both
trivial and nontrivial biconnected components. (d) shows the decomposition tree of quinine.

http://wikipedia.org/
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decomposition can be performed in linear time [47]. We call this tree of biconnected components the
decomposition tree (Figure 5.3(d)).5 We show the following key result:

Theorem 35 Let E1,E2, . . . ,En be the edge sets corresponding to n biconnected components of a graph

G(V,E). The probability of a cut (Definition 34) induced by the states of a Markov Random Field (5.2)
on G factors into that of its biconnected components:

P(C(y)) = P(y) =
n∏

k=1

P(C(y)∩ Ek). (5.8)

Proof If G(V,E) is biconnected, n = 1 and E1 = E then Theorem 35 is trivially true. Otherwise
split G into a biconnected component G1(V1,E1) which is a leaf of the decomposition tree, and the
remainder G′(V′,E′). It is always possible to find such a split, by splitting at the single articulation
vertex i connecting G1 to G′. To summarize:

V1 ∪V
′ = V, V1 ∩V

′ = {i},

E1 ∪ E
′ = E, E1 ∩ E

′ = ∅, G1 is biconnected. (5.9)

Let y1 and y′ be the states in y restricted to vertices in V1 and V′, respectively. By definition, y1 is
independent of y′ when both are conditioned on the state yi of the articulation vertex i connecting them.
By using the result in Equation 5.7 we obtain

P(C(y)) = P(y|yi) = P(y1, y′|yi)

= P(y1|yi)P(y′|yi) = P(C(y)∩ E1)P(C(y)∩ E′). (5.10)

Recursively applying this argument to G′ yields Theorem 35.

Even though the node states of two biconnected components do correlate through their common ar-
ticulation vertex, Theorem 35 shows that their edge states are independent when conditioned on that
articulation vertex. By decomposing graphs into their biconnected components, we can perform effi-
cient inference in graphs that are not biconnected themselves.

Ising Trees

Any undirected graph G can be decomposed into biconnected components. These can be either trivial

or nontrivial:

Definition 36 A biconnected component is trivial if it does not contain any cycles, otherwise it is non-
trivial. A trivial biconnected component consists of a single edge and the two vertices it connects.

A tree T does not contain any cycles, hence consists entirely of trivial biconnected components (Fig-
ure 5.3(b)). Theorem 35 then implies that each edge can be considered individually, making inference
in an Ising tree T (V,E) simple:

5This should not be confused with the junction tree (Definition 30).
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• T is planar; any embedding of T is a planar embedding.

• The minimum-weight cut of T is the set E− = {(i, j) ∈ E : Ei j < 0}. We can use Algorithm 1 to
obtain the corresponding ground state.

• The marginal probability of any edge (i, j) of T is

P((i, j) ∈ C) =
P(yi , y j)

P(yi = y j) + P(yi , y j)
=

e−Ei j

e−0 + e−Ei j
=

1
1 + e−Ei j

. (5.11)

• The log partition function of T is

ln Z = ln
∏

(i, j)∈E

(e−0 + e−Ei j ) =
∑

(i, j)∈E

ln(1 + e−Ei j ). (5.12)

General Case

The most efficient way to employ the inference algorithms (Sections 5.2 and 5.3) on graphs G that
are neither biconnected nor trees (e.g., Figure 5.3(c)) is to apply them to each nontrivial biconnected
component of G in turn. We can then use Theorem 35 to combine the results, along with the simple
solutions given in Section 5.1.4 above for trivial biconnected components, into a result for the full graph.
Letting ET ⊆ E denote the set of edges that belong to trivial biconnected components of G, we have:

• A planar embedding of G is obtained by arbitrarily combining the planar embeddings for each of
its nontrivial biconnected components and the edges in ET . The edges in ET can be embedded
arbitrarily.

• A minimum-weight cut of G is the union between the edges in E− ∩ ET and a minimum-weight
cut for each of G’s nontrivial biconnected components. We can use Algorithm 1 to obtain the
corresponding ground state.

• The marginal probability of an edge (i, j) ∈ E is (1 + e−Ei j )−1 if (i, j) ∈ ET, or computed (by the
method of Section 5.3) for the biconnected component it belongs to.

• The log partition function of G is the sum of the log partition functions of its nontrivial bicon-
nected components, plus

∑
(i, j)∈ET ln(1 + e−Ei j ) for its trivial biconnected components.

For the rest of this Chapter, we assume that G is connected and planar, and that a plane embedding is
provided. We do not require that G is biconnected, though when this is not the case, it is generally more
efficient to decompose G into biconnected components as discussed above.

5.2 Computing Ground States

Frustration (Definition 25) is the key problem in the computation of ground states. A weighted graph
is said to be frustrated if it contains at least one frustrated cycle, otherwise it is unfrustrated. Note that
trees can never be frustrated because by their definition they do not contain any cycles.
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(a) (c1) (c2) (c3)

(b) (c4) (c5) (c6)

Figure 5.4: Square face of a plane graph (dashed lines) with its ordinary (a) resp. expanded (b) dual graph (solid
lines). (c1)-(c6): Binary node states (open and filled circles) of the graph, induced cuts (bold blue dashes), and
complementary perfect matchings (bold red lines) of the expanded dual.

The lowest-energy (ground) state y∗ := argminy E(y) of an unfrustrated Ising graphical model is
found via essentially the same method as in a tree (Section 5.1.4): paint nodes as you traverse the graph,
flipping the binary color of your paintbrush whenever you traverse an edge with a negative disagreement
cost (as done by Algorithm 1 when invoked on the cut C = {(i, j) ∈ E : Ei j < 0}). This cannot lead to a
contradiction because by Definition 25 you will flip the brush color an even number of times along any
cycle in the graph, hence always end a cycle on the same color you started it with.

The presence of frustration unfortunately makes the computation of ground states much harder —
in fact, it is known to be NP-hard in general [2]. In this section we show that the ground state of a
planar Ising graphical model can be computed exactly in polynomial time via maximum-weight perfect
matching on the expanded dual of its embedded model graph.

A relationship between the states of a planar Ising model and perfect matchings (or dimer coverings)
was first established by Kasteleyn [59, 60, 61] and Fisher [30, 31] (Section 3.2). Perfect matchings in
dual graph constructs were used by Bieche et al. [9] (Section 3.3.1) and Barahona [2] (Section 3.3.2) to
compute ground states of the Ising model. We generalize a simpler construction for triangulated graphs
due to Globerson and Jaakkola [38] (Section 4.3.7). For rectangular lattices our approach reduces to the
construction of Thomas and Middleton [126] (Section 3.3.3), though their algorithm to compute ground
states is somewhat less straightforward. Pardella and Liers [98] apply this construction to very large
square lattices (up to 3000×3000), and find it to be more efficient than earlier methods [2, 9].

5.2.1 Expanded Dual Graph

The dual graph for a square face of a plane model graph is shown with solid edges in Figure 5.4(a),
and in Figure 5.5(b) for an entire graph. Each edge of the dual graph G∗ crosses exactly one edge of
the original graph. Due to this one-to-one relationship we will consider the dual to have the same set
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of edges E (with the same energies) as the original graph G. Since the nodes in the dual are different,
however, we will (with some abuse of notation) use a single index for dual edges and their weights,
corresponding to the index of the original edge in some arbitrary ordering of E. Thus if (i, j) is the kth

edge in the (ordered) E, its dual will have weight Ek := Ei j. We now construct the expanded dual graph:

Definition 37 G∗E is the expanded dual graph of the model graph G. It is constructed from the dual

graph G∗ (Definition 12) by replacing each of its nodes with a q-clique, where q is the degree of the

node.

The expanded dual graph for a dual node with degree q = 4 is shown in Figure 5.4(b), and in Fig-
ure 5.5(c) for an entire graph. The additional edges internal to each q-clique are given zero energy so as
to leave the model’s energy unaffected. For large q the introduction of these q(q − 1)/2 internal edges
slows down subsequent computations (solid line in Figure 5.8(a)). This can be avoided by subdividing
the offending q-gonal face of the model graph with chords (which are also given zero energy) before
constructing the dual. Our implementation performs best when “octangulating” the graph, i.e., splitting
octagons off all faces with q > 13. In our experiments, we found this to be more efficient than a full
triangulation (Figure 5.8(a)).

It can be seen that the expanded dual has 2|E| vertices, two for each edge in the original graph. We
therefore give the two vertices connected by the dual of the kth edge in E the indices 2k − 1 and 2k (see
Section 5.3.3 and Figure 5.7). This consistent indexing scheme allows us to run the inference algorithms
described in the remainder of this thesis without explicitly constructing the expanded dual graph data
structure.

5.2.2 Complementary Perfect Matchings

Figures 5.5(d) and 5.5(e) show two perfect matchings (in bold) of the nodes of the expanded dual of
an Ising graphical model. We prove that there is a complementary relationship between such perfect
matchings and graph cuts in the original Ising graphical model, characterized by the following two
theorems. The reader may find it helpful to refer to Figure 5.5 while going through the proofs.

Theorem 38 For every cut C of an embedded graph G(V,E,Π) there exists at least one perfect match-

ingM of its expanded dual complementary to C, i.e., E\M = C. If G is triangulated (Definition 40)

then there is exactly one suchM.

Proof By construction, the set of edges E constitutes a perfect matching of the expanded dual. Any
subset of E therefore is a (possibly partial) matching of the expanded dual. The complementM′ := E\C
of a cut of G is a subset of E and thus a matching of the expanded dual; it obeys E\M′ = E\(E\C) = C.
The nodes thatM′ leaves unmatched in the expanded dual (bold red in Figures 5.5(d) and 5.5(e)) are
those neighboring the edges of the cut C.

By definition, C intersects any cycle of G, and therefore also the perimeters of G’s faces F , in an
even number of edges. In each clique of the expanded dual,M′ thus leaves an even number of nodes
unmatched. It can therefore be completed into a perfect matchingM ⊇ M′ using only edges interior
to the cliques to pair up unmatched nodes. These edges have no counterpart in the original graph:
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(a)

0

0 0

(b) (c)

0

1 1

0 1

0

0 1

1 0

(d) (e)

Figure 5.5: (a) Planar Ising graphical model with graph G. G has five binary nodes, including a bias node (light
blue) fixed to label ‘0’. (b) The dual graph G∗ (small red nodes). (c) The expanded dual graph G∗E . (d) and (e)
show two different states of G. The graph cut induced by the given state and its complementary perfect matching
of the expanded dual are shown as bold blue and bold red edges, respectively. The nodes left unmatched by the
complementM′ := E\C of the cut in the expanded dual are in bold red.
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(M\M′)∩ E = ∅. We thus have

E\M = E\[(M\M′)∪M′] = [E\(M\M′)]\M′ = E\M′ = C. (5.13)

In a K3 clique of the expanded dual,M′ will leave two nodes unmatched or none at all. In either case
there is only one way to complete the matching, by adding one edge resp. none at all. By construction,
if G is triangulated all cliques in its expanded dual are K3 cliques, and soM is unique.

Theorem 38 shows that there exists a surjection from perfect matchings in G∗E to cuts in G. Further-
more, since we have given edges interior to the cliques of the expanded dual zero energy, every perfect
matchingM complementary to a cut C of our Ising graphical model (5.1) obeys the relation

w(M) +w(C) = w(M′) +w(C) =
∑

(i, j)∈E

Ei j = constant, (5.14)

where w(M) and w(C) are the weights of the perfect matching M and the cut C, respectively. This
complementary relationship means that instead of a minimum-weight cut in a graph we can look for
a maximum-weight perfect matching in its expanded dual. But will that matching always be comple-
mentary to a cut? We now prove the following theorem, which shows that this is true for plane graphs:

Theorem 39 Every perfect matchingM of the expanded dual of a plane graph G(V,E,Π) is comple-

mentary to a cut C of G, i.e., E\M = C.

Proof By definition, E\M is a cut of G iff it intersects every cycle O ⊆ E of G an even number of times.
This can be shown by induction over the faces of the embedding:

Base case — let O ⊆ E be the perimeter of a face of the embedding, and consider the corresponding
clique of the expanded dual: M matches an even number of nodes in the clique via interior edges. All
other nodes must be matched by edges crossing O. The complement of the matching in G thus intersects
O an even number of times:

|(E\M)∩O| ≡ 0 (mod 2). (5.15)

Induction — let Oi,O j ⊆ E be cycles in G obeying (5.15). We define the symmetric difference of
two cycles Oi and O j as Oi∆ O j := (Oi ∪O j)\(Oi ∩O j). We now have

|(E\M)∩ (Oi∆ O j)| = |[(E\M)∩ (Oi ∪O j)]\(Oi ∩O j)|

= |[(E\M)∩Oi]∪ [(E\M)∩O j]| − |(E\M)∩ (Oi ∩O j)|

= |(E\M)∩Oi| + |(E\M)∩O j| − 2|(E\M)∩Oi ∩O j|

≡ 0 + 0 − 2n ≡ 0 (mod 2), ∀n ∈ N . (5.16)

We see that property (5.15) is preserved under composition of cycles via symmetric differences, and
thus holds for all cycles that can be composed from face perimeters of the embedding of G.

All cycles in a plane graph G are contractible on its embedding surface (a plane or a sphere) because
that surface has zero genus, and is therefore simply connected. Intuitively this means that all such
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cycles can be “contracted” to a single point, while remaining on the surface of their embedding. All
contractible cycles of G can be constructed by composition of face perimeters via symmetric differences,
thus intersect E\M an even number of times. Therefore E\M is a cut.

This is where planarity matters: surfaces of non-zero genus are not simply connected, and thus non-
plane graphs may contain non-contractible cycles (e.g., cycles enclosing the hole of a torus, as shown
in Figure 7.2). In the presence of frustration, our construction does not guarantee that the complement
E\M of a perfect matching of the expanded dual contains an even number of edges along such cycles.
For planar graphs, however, the above theorems allow us to leverage known polynomial-time algorithms
for perfect matchings into inference methods for Ising graphical models. This approach also works for
non-planar Ising graphical models that do not contain any frustrated non-conctractible cycles.

We note that if all cliques of the expanded dual are of even size, there is also a direct (non-
complementary) surjection from perfect matchings to cuts in the original graph (see Section 3.2.2).
In contrast to our complementary map in Theorem 38, the direct surjection requires the addition of
dummy vertices into the expanded dual for faces of G with odd perimeter, so as to make the corre-
sponding cliques even [60, 84].

5.2.3 Computing the Ground State

The blossom-shrinking algorithm [23, 24] is a sophisticated method to efficiently compute the maximum-
weight perfect matching of a graph. It can be implemented to run in as little as O(|E| |V| log |V|) time
[89]. A detailed description of blossom-shrinking is provided in Section 7.1. In our experiments we
used both Blossom IV [17] and the more recent Blossom V code [67]. We can now efficiently compute
the lowest-energy state of a planar Ising graphical model as follows:

1. Find a planar embedding of the model graph G (Section 2.2.2).

2. Construct the expanded dual of G (Section 5.2.1).

3. Run the blossom-shrinking algorithm on G∗E to compute its maximum-weight perfect matching.
Its complement in the original model graph is the minimum-weight graph cut C (Section 5.2.2).

4. Identify the state which induces this cut C via a graph traversal (Algorithm 1).

5.3 Computing the Partition Function and Marginal Probabilities

As it involves a summation over exponentially many states y, calculating the partition function (5.2)
is generally intractable. For planar graphs, however, the generating function for perfect matchings can
be calculated in polynomial time via the determinant of a skew-symmetric matrix [30, 31, 59, 60, 61],
which we call the Kasteleyn matrix K (Section 2.3.3). Due to the close relationship with graph cuts
(Section 5.2.2) we can apply this method to calculate Z in (5.2). We first convert a planar embedding of
the Ising model graph into a Boolean “proto-Kasteleyn” matrix H:

1. Plane triangulate (Section 5.3.1) the embedded graph so as to make the relationship between cuts
and complementary perfect matchings a bijection (Section 5.2.2).
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Figure 5.6: (a) A chordal graph whose external face is not triangulated. (b) a plane triangulated graph that has a
cycle of length 4 (bold blue) without a chord. (c) proper and (d) improper plane triangulations (dashed) of the plane
graph from Figure 2.2(d).

2. Orient the edges of the graph such that the in-degree of every node is odd (Section 5.3.2).

3. Construct the Boolean proto-Kasteleyn matrix H from the oriented graph (Section 5.3.3).

4. Prefactor the triangulation edges (added in Step 1) out of H (Section 5.3.4).

Our Step 2 simplifies equivalent operations in previous constructions [31, 38, 60, 61]. Step 3 differs in
that it only sets unit (i.e., +1) entries in a Boolean matrix. Step 4 can dramatically reduce the size of H
for compact storage (as a bit matrix) and faster subsequent computations (Figure 5.8).

Edge disagreement costs do not enter into H. They are only taken into account in a second phase,
when the full Kasteleyn matrix K is constructed from H (Section 5.3.3). We can then factor K (Sec-
tion 5.3.4) and compute the partition function from its determinant (Section 5.3.4 and [30, 59]). This
factorisation can also be used to invert K, which is necessary for obtaining the marginal probabilities

of disagreement on the edges of the model graph (Section 5.3.4).

In what follows, we elaborate in turn on the graph operations of plane triangulation (Section 5.3.1),
odd edge orientation (Section 5.3.2), construction (Section 5.3.3) and factoring (Section 5.3.4) of the
Kasteleyn matrix K resp. H.

5.3.1 Plane Triangulation

We begin by plane triangulating the model graph:

Definition 40 An embedded graph is plane triangulated iff it is biconnected (Definition 5) and each of

its faces (including the external face) is a triangle.

Note that plane triangulation is not equivalent to making a graph chordal (Definition 29), though the
latter process is sometimes also called “triangulation”. For instance, the graph in Figure 5.6(a) is chordal
but not plane triangulated because the external face is not triangular, while that in Figure 5.6(b) is plane
triangulated but not chordal because it contains a cycle of length 4 (blue) that has no chord.

We can plane triangulate an embedded graph in linear time by traversing all of its faces and inserting
chords as necessary as we go along (Algorithm 2). This may create multiple edges between the same
two vertices, such as edge (2, 4) in Figure 5.6(c). Care must be taken when encountering “dangling”
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nodes, i.e., nodes in trivial biconnected components that are leaves of the decomposition tree. Such
nodes could cause the insertion of a self-loop (edge (4, 5) in Figure 5.6(d)). Our Algorithm 2 detects
and biconnects such components, as Definition 40 requires. From now on, we will refer to the edges
added by Algorithm 2 as the triangulation edges.

The insert chord(i, j, k) subroutine of Algorithm 2 updates E, πi and πk so as to insert the new
edge (i, k) in its proper place in the rotation system. In order to leave the distribution (5.2) modeled
by the graph unchanged, the new edge is given zero energy. Repeated traversals of the same face in
Algorithm 2 can be avoided by the use of “done” flags, which have been omitted here for the sake of
clarity.

Note that plane triangulation is not strictly necessary for the computation of partition function or
marginal probabilities. Plane triangulation ensures that the graph becomes biconnected, so an edge
cannot border the same face of the model graph on both sides. Thus the expanded dual is a proper

graph, i.e., has no multiple edges and no self loops.

In previous work [31, 38], plane triangulation came at a computational price: the edges added
during plane triangulation can make factoring and inversion of K (Section 5.3.4) significantly (up to 20
times) more expensive. We avoid this cost by removing the triangulation edges before constructing K
(Section 5.3.4). This is legal, because we are not interested in the marginal probability of triangulation
edges.

Algorithm 2 Plane Triangulation

Input: plane graph G(V,E,Π) with |V| ≥ 3
∀i ∈ V :
∀(i, j) ∈ Ei : (edges incident to node i)
1. ( j, k) := π j( j, i)
2. (k, l) := πk(k, j)
3. while l , i or πl(l, k) , (l, j):

(a) if i = k then (avoid self-loop)
i := j, j := k, k := l
(k, l) := πk(k, j)

(b) insert chord(i, j, k)
(c) i := k, j := l
(d) ( j, k) := π j( j, i)
(e) (k, l) := πk(k, j)

Output: plane triangulated graph G(V,E,Π)

procedure insert chord(i, j, k ∈ V) (insert (k, i) between (k, j) and πk(k, j))
1. E := E ∪ {(i, k)}
Update πk

2. πk(k, i) := πk(k, j)
3. πk(k, j) := (k, i)

Update πi

4. πi(π−1
i (i, j)) := (i, k) (π−1

i (i, j) is the counter-clockwise edge from (i, j))
5. πi(i, k) := (i, j)
6. Eik := 0
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Figure 5.7: Clockwise odd orientation (Section 5.3.2) and indexing scheme (Section 5.3.3) for the expanded dual
graph G∗E (red, small nodes) of the model graph G (large nodes).

5.3.2 Odd Edge Orientation

To calculate the generating function for perfect matchings, the expanded dual graph G∗E must be given
a clockwise odd orientation (Section 2.3.4, Lemma 18). Here we will describe an equivalent orientation
for the model graph G.

We will now explain the orientation process by referring to Figure 5.7. By giving all interior edges
of the K3 cliques of the expanded dual graph G∗E a clockwise orientation (small red arrows), we ensure
that

• The interior faces of the K3 cliques have a clockwise odd orientation.

• All interior edges of the K3 cliques are oriented counter-clockwise wrt. all faces exterior to the
K3 cliques, hence do not affect the latters’ clockwise odd orientation status.

It remains to consider the orientation of edges external to the K3 cliques (large red arrows in Figure
5.7). What does a clockwise odd orientation of these edges correspond to in the original model graph
G? To map these edges back into the model graph, rotate them clockwise by 90◦ degrees. A face with
a clockwise odd orientation of its perimeter in G∗E thus maps to a vertex with an odd in-degree, i.e., a
vertex with an odd number of incoming edges. This facilitates a drastic simplification of this step in our
construction:

Lemma 41 To establish a clockwise odd orientation of the expanded dual graph G∗E , orient the edges

of the model graph G such that all vertices, except possibly one, have an odd in-degree.

Our Algorithm 3 achieves this time linear in |E| by orienting edges appropriately upon return from a
depth-first traversal of the graph. In contrast to earlier constructions [31, 38, 60], it does not require
following orbits around faces, and in fact does not refer to an embedding Π or dual graph G∗ at all.
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Algorithm 3 Construct Odd Edge Orientation

Input: undirected graph G(V,E)
1. ∀ v ∈ V : v.visited := false
2. pick arbitrary edge (r, s) ∈ E
3. E′ := {(r, s)}
4. make odd(r, s)

Output: orientation E′ of G(V,E):
in-degree(v) ≡ 1 (mod 2), ∀ v ∈ V\{s}

function make odd: (u, v ∈ V)→ {true, false}
1. E := E\{(u, v)}
2. if v.visited=true then return true
3. v.visited := true
4. odd := false
5. ∀{v,w} ∈ E:

if make odd(v,w)=true then
(a) E′ := E′ ∪ {(w, v)}
(b) odd := ¬ odd

else E′ := E′ ∪ {(v,w)}
6. return odd

In Algorithm 3 any vertex can be chosen to be the exceptional vertex s (Lemma 41), since the choice
of the external face of a plane drawing is arbitrary. The external face is an artifact of the drawing, not
an intrinsic property of the embedding. A planar graph embedded on a sphere has no external face (see
Figure 2.7).

5.3.3 Constructing the Kasteleyn Matrix

The Kasteleyn matrix K is a skew-symmetric, 2|E| × 2|E|matrix constructed from the model graph of the
Ising graphical model. Its determinant is the square of the partition function. Our construction improves
upon the work of Globerson and Jaakkola [38] in a number of ways:

• We employ an indexing scheme (Section 5.3.3) that removes any need to refer to the expanded
dual graph G∗E , which we never explicitly construct.

• We break the construction of the Kasteleyn matrix into two phases, the first of which is invariant
with respect to the model’s disagreement costs. This has several advantages as discussed in
Section 5.3.3.

• We make the “proto-Kasteleyn” matrix H computed in the first phase very compact by prefactor-

ing out the triangulation edges (see Section 5.3.4) and storing it as a bit matrix. Empirically this
makes H several orders of magnitude smaller than K.
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Figure 5.8: Cost of our inference methods on a ring graph (i.e., single cycle), plotted against ring size. (a) and
(b): CPU time on Apple MacBook with 2.2 GHz Intel Core2 Duo processor, averaged over 100 repetitions. (a)
MAP state calculated via Blossom IV [17] on original, triangulated, and octangulated ring. (b) marginal edge
probabilities with vs. without prefactoring. (c) size of K (double precision, no prefactoring) vs. prefactored bit
matrix H, in uncompressed (solid lines) vs. compressed form (dashed lines), using compressed row storage for K
and bzip2 compression for H.

Indexing Scheme

The expanded dual G∗E has 2|E| vertices, one lying to either side of every edge of the model graph G.
We associate each model edge with an index k, so if ek = (i, j) ∈ E then πi(ek) = πi(i, j) (Definition 7).
When viewing the model edge ek along its direction in E′, we label the dual node to its right 2k−1 and
that to its left 2k. For example in Figure 5.7 the node to the left of e3 is 6, while the one to its right is
5. One benefit of this scheme is that quantities relating to the edges of the model graph (as opposed to
internal edges of the cliques of the expanded dual) will always be found on the superdiagonal of K.

Two-Phase Construction

In the first phase we process the structure of the model graph into a Boolean “proto-Kasteleyn” matrix
H which does not yet include disagreement costs. H only has positive entries, and only those corre-
sponding to edges with zero disagreement cost, i.e., those added during plane triangulation or those
internal to the cliques of the expanded dual. All such entries have the weight e0 = 1, making H a
Boolean matrix, which can be stored compactly as a bit matrix. Using the indexing scheme from Sec-
tion 5.3.3, our Algorithm 4 constructs H in linear time, cycling once through the edges incident upon
each vertex of the model graph.

In the second phase, we use H to construct the conventional, real-valued Kasteleyn matrix K by
adding the exponentiated disagreement costs Ek, ∀k = {1, 2, . . . |E|} along the superdiagonal and skew-
symmetrizing:

1. K := H

2. K2k−1,2k := K2k−1,2k + eEk ∀k ∈ {1, 2, . . . |E|}

3. K := K − K>

This two-phase construction of K has a number of advantages over classical constructions [30, 38, 59]:



62 Planar Ising Graphical Models: Inference

• When working with a large number of isomorphic graphs (as we do in Chapter 6), the corre-
sponding proto-Kasteleyn matrix is identical for all of them, hence needs to be constructed just
once.

• During maximum likelihood parameter estimation, the partition function and/or marginals have
to be recomputed many times for the same graph, with disagreement costs varying due to the
ongoing adaptation of the model parameters. H remains valid when disagreement costs change,
so we can compute it just once upfront and then reuse it in the parameter estimation loop.

• H can be stored very compactly as a prefactored bit matrix. As Figure 5.8(c) shows, the uncom-
pressed H can be several orders of magnitude smaller than the corresponding Kasteleyn matrix K.
Since G∗E is cubic (i.e., every node has degree 3), the Kasteleyn matrix K is sparse with each row
and column having exactly 3 non-zero entries. Compressed row storage [1] of K is efficient, but
applying the bzip2 compressor (from http://www.bzip.org/) to the prefactored bit matrix H
yields by far the most compact storage format we have found. Such memory efficiency becomes
very important when working with large data sets of non-isomorphic graphs.

Algorithm 4 Construct proto-Kasteleyn Bit Matrix H

Input: oriented, embedded and triangulated graph G(V,E′,Π)

1. H := 0 ∈ {0, 1}2|E′ |×2|E′ |

2. ∀ v ∈ V :
(a) es := any edge incident on v
(b) if es points to v then α := 2s

else α := 2s − 1
(c) er := πv(es)
(d) do

if er points to v then
H2r−1,α := 1
α := 2r
if er was created by plane triangulation (Alg. 2) then

H2r−1,2r := 1
else

H2r,α := 1
α := 2r − 1

er := πv(er)
while er , πv(es)

Output: proto-Kasteleyn bit matrix H

5.3.4 Factoring Kasteleyn Matrices

Standard approaches such as LU-factorization can be used to factor the Kasteleyn matrix K, but they
do not exploit its skew symmetry and may encounter numerical difficulties. The preferred decomposi-
tions for even-sized skew-symmetric matrices are LDL> (i.e., root-free Cholesky-style) factorizations

http://www.bzip.org/
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operating on 2 × 2 matrix blocks [46, Chapter 11]. Here we develop such a decomposition which can
be used to factor K as well as to prefactor H (see below). We begin by writing the Kasteleyn matrix as

K =


0 c a>

−c 0 b>

−a −b C

 , (5.17)

for some scalar c, vectors a and b, and a matrix C which is either empty or again of the same form. We
factor (5.17) into [see 5, 14]

K =


0 −1 0>

1 0 0>

a/c b/c I




0 c 0>

−c 0 0>

0 0 C′




0 1 a>/c
−1 0 b>/c

0 0 I

 , (5.18)

where 0 is the zero matrix, I is the identity matrix and C′ is the Schur complement given as

C′ := C + (ba>− ab>)/c. (5.19)

Iterated application of (5.18) to the Schur complement ultimately yields K = R>JR, where

R :=



0 1 a>1/c1

−1 0 b>1/c1

0 0 0 1 a>2/c2

0 −1 0 b>2/c2
...

. . .
. . .

...

0 0 0 1
0 · · · 0 −1 0


and J :=



0 c1 0 · · · 0
−c1 0 0 0

0 0 0 c2 . . .
...

0 −c2 0
0...

. . .
. . . 0 0

0 0 0 c|E|
0 · · · 0 −c|E| 0


. (5.20)

To prevent small pivots ci from causing numerical instability, pivoting is required. In our experience,
partial pivoting suffices here since Kasteleyn matrices are sparse and have at least two entries of unit
magnitude (i.e., suitable pivots) in each row and column.

Partition Function

The partition function for perfect matchings is
√
|K| [30, 59]. Our factoring gives |R| = 1 and |J | =∏

i c2
i , so we have

√
|K| =

√
|R>| |J | |R| =

√
|J | =

|E|∏
i=1

|ci|. (5.21)

Calculation of the product in (5.21) is prone to numerical overflow. This can be avoided by working
with logarithms. Using the complementary relationship (5.14) with graph cuts in planar Ising graphical
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models, we show that the log partition function for the latter is

ln Z := ln
∑

y
exp

− ∑
ek∈C(y)

Ek

 = ln
∑

y
exp

−
∑

ek∈E

Ek −
∑

ek<C(y)

Ek


 (5.22)

= ln

exp

−∑
ek∈E

Ek

∑
y

exp

 ∑
ek<C(y)

Ek


 = ln

√
|K| −

∑
ek∈E

Ek =

|E|∑
i=1

(ln |ci| − Ei).

Marginal Probabilities

The marginal probability of disagreement along an edge equals the negative gradient of the log partition
function (5.22) with respect to the disagreement costs. Computing this involves the inverse of K. If C
is some cut of the model graph, we compute the marginal probability as follows:

P(ek ∈ C) =
∑

y: ek∈C(y)

P(y) = 1
Z

∑
y: ek∈C(y)

e−E(y) = −
1
Z
∂Z
∂Ek

= −
∂ ln Z
∂Ek

= 1 −
1

2|K|
∂|K|
∂Ek

= 1 − 1
2 tr

(
K−1 ∂K

∂Ek

)
= 1 + K−1

2k−1,2k K2k−1,2k, (5.23)

where tr denotes the matrix trace, and we have used the fact that K−1 is also skew-symmetric. To invert
K, observe from (5.20) that R and J are essentially triangular resp. diagonal (simply swap rows 2k−1
and 2k, k = 1, 2, . . . |E|), and thus easily inverted. Then use K−1= R−1 J−1 R−> to obtain

K−1
2k−1,2k =

2|E|∑
i=1

2|E|∑
j=1

R−1
2k−1,i J−1

i, j R−>j,2k =
−1
ck
+

|E|∑
i=k+1

dik, (5.24)

where dik =
R−1

2k−1,2i R−1
2k,2i−1 − R−1

2k−1,2i−1 R−1
2k,2i

ci
.

Note in the above A−1
i,k = [A−1]i,k so inversion is performed first.

Prefactoring

Consider the rows and columns of K corresponding to an edge added during plane triangulation (Sec-
tion 5.3.1). Reorder K to bring those rows and columns to the top left, so that they form the a, b, and
c of (5.17). Since the disagreement cost of a triangulation edge is zero, we now have a unity pivot:
c = e0 = 1. This has two advantageous consequences:

Size reduction: The unity pivot does not affect the value of the partition function. Since we are not
interested in the marginal probability of triangulation edges (which after all are not part of the original
model), we do not need a or b either, once we have computed the Schur complement (5.19). We can
therefore discard the first two rows and first two columns of K after factoring (5.17). Factoring out all
triangulation edges in this fashion reduces the size of K (resp. R and J) to range only over the edges of
the original model graph. This reduces storage requirements and speeds up subsequent computation of
the inverse (Figure 5.8(b)).
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Boolean closure: The unity pivot eliminates the division from the Schur complement (5.19). In
fact we show below that applying (5.18) to prefactor H − H> yields a Schur complement that can be
expressed as H′ − H′>, where H′ is again a Boolean matrix. This closure property allows us to simply
prefactor triangulation edges directly out of H without explicitly constructing K.

Specifically, let K = H − H> for a proto-Kasteleyn matrix H with elements in {0, 1}. Without loss
of generality, assume that H and its transpose are disjoint, i.e., have no non-zero elements in common:
H � H> = 0, where � denotes Hadamard (element-wise) multiplication. Algorithm 4 respects this
condition; violations would cancel in the construction of K anyway. Expressing H as

H =


0 1 a>1
0 0 b>1

a2 b2 C1

 , (5.25)

we can write K = H − H> as (5.17) with a = a1 − a2, b = b1 − b2, c = 1, and C = C1 −C>1. The Schur
complement (5.19) then becomes

C′ = C1 −C>1 + (b1 − b2)(a1 − a2)>− (a1 − a2)(b1 − b2)>

= (C1 + b1a>1 + b2a>2 + a1b>2 + a2b>1 ) − (C>1 + a1b>1 + a2b>2 + b2a>1 + b1a>2 )

= H′ − H′>, (5.26)

where

H′ = C1 + b1a>1 + b2a>2 + a1b>2 + a2b>1 . (5.27)

It remains to show that H′ is a Boolean matrix, ie all its elements are in {0, 1}. By definition of H
(5.25), all elements of C1, a1, a2, b1, b2 are in {0, 1}, and by closure of multiplication in {0, 1}, so are
their products. Thus an element of H′ will be in {0, 1} iff it is non-zero in at most one term on the
right-hand side of (5.27), or equivalently iff all pairs formed from the five terms in question are disjoint.
We show that this is the case:

• Because H � H> = 0, we know that neither a1 and a2 nor b1 and b2 can have any non-zero
elements in common, so b1a>1 and b2a>2 are disjoint, as are a1b>2 and a2b>1 .

• By construction of H (Algorithm 4), a1 and b1 (resp. a2 and b2) can only have an element in
common if the dual nodes on both sides of the corresponding edge are members of the same
clique. This cannot happen because we explicitly ensure that the graph becomes biconnected
during plane triangulation (Section 5.3.1), so that an edge cannot border the same face of the
model graph on both sides. Thus all four outer products in (5.27) are pairwise disjoint.

• Finally, each outer product in (5.27) is disjoint from C1 as long as the edges being factored out do
not form a cut of the model graph (i.e., cycle of the dual). We are prefactoring only edges added
during triangulation. These edges will form a cut only if the model graph was disconnected
prior to triangulation. However this cannot happen, because we deal with (and eliminate) this
possibility during earlier preprocessing (Section 5.1.3).



66 Planar Ising Graphical Models: Inference

In summary, all five terms on the right-hand side of (5.27) are pairwise disjoint. Thus the Schur comple-
ment H′ is a Boolean matrix as well, and can be computed from H (5.25) very efficiently by replacing
the additions and multiplications in (5.27) with bitwise OR and AND operations, respectively. As long
as further triangulation edges remain in H′, we then set H := H′ and iteratively apply (5.25) and (5.27)
so as to prefactor them out as well.

5.4 Conclusion

This chapter described an alternative algorithmic framework for efficient exact inference in binary
graphical models, which replaces the submodularity constraint of graph cut methods with a planarity
constraint. In contrast to previous approaches, our construction uses the complementary mapping (Sec-
tion 3.2.2) between cuts in the model graph G (even subgraphs in G∗) and perfect matchings in its
expanded dual graph G∗E . The existence of two distinct tractable frameworks for inference in binary
graphical models implies a more powerful hybrid. Consider a graph each of whose biconnected com-
ponents is either planar or submodular. In its entirety, this graph may be neither planar nor submodular,
yet efficient exact inference in it is clearly possible by applying the appropriate framework to each com-
ponent, then combining the results (Section 5.1.4). Can this hybrid approach be extended to cover less
obvious situations?

Although we have only dealt with binary-labeled models, the Ising graphical model can also imple-
ment α-expansion moves and α-β-swaps [12], allowing it to deal with multi-labeled models.

Our exact algorithms can all be extended to non-planar graphs, at a cost exponential in the genus of
the embedding. These extensions may prove of great practical value for graphs that are “almost” planar.
Examples of such graphs include road networks (where edge crossings arise from overpasses without
on-ramps) and graphs describing the tertiary structure of proteins [135].



Chapter 6

Planar Ising Graphical Models:
Experiments

Unlike graph cut methods, the algorithms described in Chapter 5 allow us to perform penalized maximum-
likelihood (Section 6.1.1) as well as maximum-margin (Section 6.1.2) parameter estimation in our Ising
graphical model. For prediction we can employ marginal posterior probabilities as well as MAP states.

We demonstrate the suitability of our approach to CRF parameter estimation on 3 tasks whose under-
lying model graph is planar. We begin with two computer vision problems: the synthetic binary image
denoising task of Kumar and Hebert [76, 77] (Section 6.2), and boundary detection in noisy masks
from the GrabCut Ground Truth image segmentation database [104] (Section 6.3). Finally, we apply
Ising CRFs to estimate territory in the game of go by employing graph abstraction and parametrisation
techniques (Section 6.4).

6.1 Parameter Estimation

We chose to represent the Ising graphical model as a planar Conditional Random Field (CRF). We
compute the disagreement costs in Equation 5.1 as Ek := θ>xk, i.e., as inner products between local
features (sufficient statistics) xk of the modeled data at each edge ek, and corresponding parameters
θ of the model. In a computer vision task, for example, xk might be the absolute intensity difference
between two adjacent pixels. We use a Markov Random Field (5.2) to model the conditional probability

distribution P(y|x, θ), where x denotes the union of all local features.

6.1.1 Maximum Likelihood

Penalized maximum-likelihood (ML) CRF parameter estimation seeks to minimize wrt. θ the L2-
regularized negative log-likelihood of a given target labeling ỹ.6 Using (5.2) this negative log-likelihood

6For notational clarity we suppress here the fact that we are usually modeling a collection of data items. The objective function
for such a set is simply the sum of objectives for each individual item in it.

67
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for the Ising graphical model becomes

LML(θ) := 1
2 λ‖θ‖

2 − lnP(ỹ|x, θ)

= 1
2 λ‖θ‖

2 + E(ỹ|x, θ) + ln Z(θ|x), (6.1)

where λ is the regularization parameter, E(y) is the energy function of the Ising graphical model (5.1)
and P(y) is its joint probability distribution (5.2). This is a smooth, convex, non-negative objective that
can be optimized via gradient methods such as LBFGS, either in conventional batch mode [86, 95] or
online [113]. The gradient of (6.1) with respect to the parameters θ is given by

∂

∂θ
LML(θ) = λθ +

∑
ek∈E

(
Jek ∈ C(ỹ)K − P(ek ∈ C(y|x, θ))

)
xk, (6.2)

where C(ỹ) is the cut induced by the target state ỹ, and P(ek ∈ C(y|x, θ)) is the marginal probability of
ek being contained in a cut, given x and θ. We compute the latter via the inverse of the Kasteleyn matrix
(5.23).

6.1.2 Maximum Margin

For maximum-margin (MM) parameter estimation [123] we instead minimize

LMM(θ) := 1
2 λ‖θ‖

2 + E(ỹ|x, θ) −min
y

M(y|ỹ, x, θ) (6.3)

= 1
2 λ‖θ‖

2 + E(ỹ|x, θ) − E(ŷ|x, θ) + d(ŷ||ỹ),

where ŷ := argminy M(y|ỹ, x, θ) is the worst margin violator, i.e., the state that minimizes, relative to a
given target state ỹ the margin energy

M(y|ỹ) := E(y) − d(y||ỹ), (6.4)

where d(·||·) is some measure of divergence in state space. We choose d to be a weighted Hamming
distance between induced cuts:

d(y||ỹ) :=
∑
ek∈E

r
Jek ∈ C(y)K , Jek ∈ C(ỹ)K

z
vk, (6.5)

where vk > 0 are constant weighting factors (in the simplest case: all ones) on the edges of G. It is now
easy to verify that the margin energy (6.4) is implemented (up to a shift that depends only on ỹ) by an
isomorphic Ising graphical model with disagreement costs

Ēk := Ek + (2 Jek ∈ C(ỹ)K − 1) vk. (6.6)

Thus we can efficiently find the worst margin violator ŷ by computing the ground state (Section 5.2.3)
of this isomorphic Ising graphical model. Thomas and Middleton [126] employ a similar approach to
obtain the ground state from a given state ỹ by setting up an isomorphic Ising model with disagreement
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costs Ēk := Ek(1 − 2 Jek ∈ C(ỹ)K). Using (6.6), the maximum-margin objective (6.3) can be expressed
as

LMM(θ) := 1
2 λ‖θ‖

2 + Ē(ỹ|x, θ) − Ē(ŷ|x, θ), (6.7)

where Ē(ŷ|x, θ) is the energy of the worst margin violator. This objective is convex but non-smooth; its
gradient is

∂

∂θ
LMM(θ) = λθ +

∑
ek∈E

(
Jek ∈ C(ỹ)K − Jek ∈ C(ŷ)K

)
xk. (6.8)

In other words, local features xk are multiplied by one of {−1, 0, 1}, depending on the membership of
edge ek in the cuts induced by ỹ and ŷ, respectively. We can minimize (6.7) via bundle methods, such
as the bundle trust (BT) algorithm [109], making use of the convenient lower bound: LMM(θ) ≥ 0, ∀θ.
This lower bound holds because in Equation 6.7

Ē(ỹ|x, θ) = Ē(ỹ|x, θ) − d(ỹ||ỹ) (6.9)

= M(ỹ|ỹ, x, θ)

≥ min
y

M(y|ỹ, x, θ) = Ē(ŷ|x, θ).

6.2 Synthetic Binary Image Denoising

Kumar and Hebert [76, 77] developed an image denoising benchmark problem for binary-labeled CRFs
based on four hand-drawn 64×64 pixel images (Figure 6.1, top row). We created 50 instances of each
image corrupted with pink noise, produced by convolving a white noise image (all pixels i.i.d. uniformly
random) with a Gaussian density of one pixel standard deviation.7 Original and pink noise images were
linearly mixed using signal-to-noise (S/N) amplitude ratios of 1:n, where n ∈ N. Figure 6.1 shows
samples of the resulting noisy instances for S/N ratios of 1:5 (row 2) and 1:6 (row 4).

We then employed a grid Ising CRF to denoise the images, with edge disagreement energies set to
Ei j := [1, |xi − x j|]>θ , where xi is the pixel intensity at node i. The perimeter of the grid was connected
to a bias node with constant pixel intensity x0 := 0 and fixed label y0 := 0. Edges to the bias had their
own parameters, yielding a CRF with four parameters and up to (for a 64×64 grid) 4097 nodes and 8316
edges.

The CRFs were trained by maximum margin (MM) and maximum likelihood (ML) parameter es-
timation (Section 6.1) on the 50 noisy instances derived from the first image (Figure 6.1, left column)
only.8 We assessed the quality of the obtained parameters by determining (via the method of Sec-
tion 5.2.3) the maximum a posteriori (MAP) states

y∗ := argmax
y
P(y|x, θ) = argmin

y
E(y|x, θ) (6.10)

of the trained CRF for all 150 noisy instances of the other three images. Interpreting these MAP states
7See http://en.wikipedia.org/wiki/Pink noise and http://en.wikipedia.org/wiki/White noise for more details.
8The regularizer λ was set to 2.

http://en.wikipedia.org/wiki/Pink_noise
http://en.wikipedia.org/wiki/White_noise
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(used for
training)

(used for
training)

Figure 6.1: Denoising of binary images by maximum-margin training of grid Ising CRFs. Row 1: original images
[76, 77]. Rows 2 and 3: examples of images mixed with pink noise in a 1:5 ratio and their reconstruction via
MAP state of 64×64 Ising grid CRF. Rows 4 and 5: examples of images mixed with pink noise in a 1:6 ratio and
their reconstruction via MAP state of 64×64 Ising grid CRF. Only the left-most image was used for training (via
max-margin CRF parameter estimation, λ = 2); the other 3 images were used for reconstruction.
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Train Method Patch Size Train Time (s) Edge Error (%) Node Error (%)

MM

64 × 64 490.4 1.15 2.10
32 × 32 174.7 1.16 2.15
16 × 16 91.4 1.12 1.98

8 × 8
78.1 1.09 1.83

ML 5468.2 1.11 1.92

Table 6.1: Performance comparison of parameter estimation methods on the denoising task with image reconstruc-
tion via MAP on the full (64×64) model and images. Patch Size is the size of patches used during training. Train
Time is the time required to train on 50 images. The minimum in each result column is boldfaced.

as attempted reconstructions of the original images, we then calculated the reconstruction error rates for
both nodes and edges of the model.

All experiments in Section 6.2 used Blossom IV [17] and were carried out on a Linux PC with 3 GB
RAM and dual Intel Pentium 4 processors running at 3.6 GHz, each with 2 MB of level 2 cache.

6.2.1 Noise Level

We first explore the limit of the ability of a full-size (64×64) MM-trained Ising grid CRF to reconstruct
the test images as the noise level increases. Rows 3 and 5 of Figure 6.1 show sample reconstructions
obtained from the noisy instances shown in rows 2 and 4, respectively. At low noise levels (n < 5) we
obtain perfect reconstructions of the original images. At an S/N ratio of 1:5 the first subtle errors do
creep in (Figure 6.1, row 3), though less than 0.5% of the nodes and 0.3% of the edges are predicted
incorrectly. At the 1:6 S/N ratio, these figures increase to 2.1% for nodes and 1.15% for edges, and the
errors become far more noticeable (Figure 6.1, row 5). For higher noise levels (n > 6) the reconstruc-
tions rapidly deteriorate as the noise finally overwhelms the signal. It must be noted that at these noise
levels our human visual system is also unable to accurately reconstruct the images.

6.2.2 Parameter Estimation

Next we compared MM and ML parameter estimation at the S/N ratio of 1:6 (Figure 6.1, row 4), where
reconstruction begins to break down and any differences in performance should be evident. To make
ML training computationally feasible, we subdivided each training image into 64 8×8 patches, then
trained an 8×8 grid CRF on those patches. For MM training we used the full (64×64) images and
model, as well as 32×32, 16×16, and 8×8 patches, so as to assess how this subdividision impacts the
quality of the model. Testing always employed the MAP state of the full model on the full images (i.e.,

64×64).

Table 6.1 reports the edge and node errors obtained under each experimental condition. To assess
statistical significance, we performed binomial pairwise comparison tests at a 95% confidence level
against the null hypothesis that each of the two algorithms being compared has an equal (50%) chance
of outperforming the other on a given test image.

We found no statistically significant difference here between 8×8 CRFs trained by MM vs. ML.
However, ML training took 70 times as long to achieve this, so MM training is much more preferable
on computational grounds.
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Counter to our expectations, the node and edge errors suggest that MM training actually works
better on small (8×8 and 16×16) image patches. We believe that this is because small patches have
a relatively larger perimeter, leading to better training of the bias edges. Pairwise comparison tests,
however, only found the node error for the 32×32 patch-trained CRF to be significantly worse than for
the smaller patches; all other differences were below the significance threshold. We can confidently
state that subdividing the images into small patches did not hurt performance, and yielded much shorter
training times.

The reduced performance of the 32×32 model could be an artifact of the training image we are using
(first image in Figure 6.1, row 4). The 32×32 patches are generated by cutting the image in half both
vertically and horizontally. The resulting four 32×32 patches each have a black region on two edges of
their boundaries. Since the model connects the entire perimeter to a bias node, the strong presence of
these black regions weakens the learned boundary parameters, which reduces the prediction accuracy.

6.2.3 Reconstruction

Fox and Nicholls [33] argued that the MAP state does not summarize well the information in the pos-
terior probability distribution of an Ising model of noisy binary images, and proposed reconstruction
via the marginal posterior mode (MPM) instead. For binary labels, the MPM is simply obtained by
thresholding the marginal posterior node probabilities: yi := JP(yi=1 | x, θ) > 0.5K. However, in our
Ising graphical model we have marginal posterior probabilities for edges (Section 5.3.4), and infer node
states from graph cuts (Algorithm 1). Here implementing the MPM runs into a difficulty, since the edge
set

{ek ∈ E : P(ek ∈ C(y|x, θ)) > 0.5} (6.11)

may not be a cut of the model graph, hence may not unambiguously induce a node state. What we really
need is the cut closest (in some given sense) to (6.11). For this purpose we formulate the state y+ with
the maximal minimum marginal posterior (M3P):

y+ := argmax
y′

min
ek∈E

 P(ek ∈ C(y|x, θ)) if ek ∈ C(y′),
1 − P(ek ∈ C(y|x, θ)) otherwise.

(6.12)

In other words, the M3P state (6.12) is induced by the cut whose edges (and those of its complement)
have the largest minimum marginal probability. We can efficiently compute y+ as follows:

1. Find the maximum-weight spanning tree T (V,E+) of the model graph G(V,E) with edge weights
|P(ek ∈ C(y|x, θ)) − 0.5|. This can be done in O(|E| log |E|) time.

2. Run Algorithm 1 on T (V,E+) to find y+ as the state induced by the edge set (6.11).

Since T (V,E+) is a tree, it contains no cycles, so Algorithm 1 will unambiguously identify the M3P
state.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.2: Image reconstructions on the denoising task with the Ising CRF trained via MM on 8×8 patches. (a)
original images [76, 77]. (b) examples of images mixed with pink noise in a 1:6 ratio. (c) examples of MAP
reconstruction of the full 64×64 image. (d) examples MAP reconstruction of 8×8 patches. (e) examples M3P
reconstruction of 8×8 patches. (f) examples QPBO reconstruction of 8×8 patches, where gray regions could not be
reconstructed due to unlabeled nodes.
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Test Method Patch Size Test Time (s) Edge Error (%) Unl. Edges (%) Node Error (%) Unl. Nodes (%)

MAP

8×8

3.3 1.96 — 3.31 —
M3P 397.5 1.95 — 3.32 —

QPBO 475.3 2.70 1.99 3.75 1.94
QPBOP 450.4 1.96 < 0.01 3.31 < 0.01

Test Method Patch Size Test Time (s) Edge Error (%) Unl. Edges (%) Node Error (%) Unl. Nodes (%)

MAP
16×16

3.7 1.37 — 2.33 —
QPBO 154.7 3.66 5.18 4.21 5.09

QPBOP 159.5 1.41 0.08 2.35 0.08

MAP
32×32

4.2 1.14 — 1.89 —
QPBO 51.1 21.20 41.52 21.40 41.44

QPBOP 988.4 7.12 12.37 7.77 12.35

MAP
64×64

5.2 1.09 — 1.83 —
QPBO 24.7 49.83 99.66 49.83 99.63

QPBOP 24031.5 43.94 87.66 44.60 87.51

Table 6.2: Comparison of reconstruction methods on the denoising task, using the parameters of an MM-trained
8×8 CRF. Patch Size is the size of patches used during testing. Test Time is the time required to reconstruct all 150
images. Unlabeled nodes and edges count as half errors. Unlabeled percentages are not applicable to MAP and
M3P, since these methods provide a full labeling. The minimum in each result column is boldfaced.

Algorithm Comparison

Table 6.2 lists the reconstruction errors achieved on the denoising task using the parameters of the MM-
trained 8×8 CRF which gave the best performance in Section 6.2.2. Note that we obtained comparable
results for ML training on 8×8 patches and MM training on the full images.

We were able to compare MAP vs. M3P states only when reconstructing 8×8 patches (Table 6.2 top).
Since the M3P state (6.12) requires calculation of the edge marginals, it was not feasible to compute it
for larger patches. To highlight the difficulty of this task, we also compared to quadratic pseudo-boolean
optimization (QPBO) and its variant QPBOP (with probing) [43, 68, 105]. These methods extend the
classical graph cut algorithm (Section 4.3.5) by providing a part of an optimal node state for graphical
models with non-submodular energy functions. Columns 5 and 7 of Table 6.2 show the percentage of
unlabeled edges and nodes, respectively. To be fair on QPBO and QPBOP we count unlabeled nodes
and edges as half errors.

The binomial pairwise comparison test at a 95% confidence level reveals no statistically signifi-
cant difference between MAP and M3P states. Thus in our framework we are not able to reproduce
the advantage that Fox and Nicholls [33] report for MPM. Furthermore, the MAP state on the entire
image clearly outperforms any reconstruction from 8×8 patches in terms of both edge and node error
(Table 6.2 and Figures 6.2(c) and 6.2(d)). The impressive scalability of the MAP state computation
via blossom-shrinking (Section 5.2.3) thus in practice overrules any possible theoretical advantage that
reconstructions via marginal probabilities may have.
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The binomial pairwise comparison test at a 95% confidence level also reveals no statistically sig-
nificant difference between MAP and QPBOP states. QPBOP manages to label nearly all the nodes
on this task, thus its reconstruction is close to optimal. However, QPBO cannot label 1.94% of nodes
(Figure 6.2(f)) making it significantly worse than QPBOP and MAP.

Scalability

When reconstructing on patches larger than 8 × 8, the MAP state significantly outperforms QPBO and
QPBOP in both edge and node error (Table 6.2 bottom). As the patch size increases, the reconstruction
quality of QPBO and QPBOP rapidly decreases, since the percentage of unlabeled edges and nodes
becomes high.

MAP is orders of magnitude faster than all of the control methods. Its advantage is most evident
when reconstructing the full images. Interestingly, QPBO becomes relatively faster as the patch size in-
creases. This is because in larger patches QPBO has less chance of resolving unlabeled nodes, therefore
it “gives up” more quickly.

6.3 Boundary Detection

We designed a boundary detection task based on images from the GrabCut Ground Truth image seg-
mentation database [104]. We took 100×100 pixel subregions of images that depicted a segmentation
boundary, and corrupted the segmentation mask with pink noise, produced by convolving a white noise
image (all pixels i.i.d. uniformly random) with a Gaussian density with one pixel standard deviation.

We then employed a planar Ising graphical model to recover the original boundary. We used a
100×100 square grid with one additional edge fixed to a high energy, encoding prior knowledge that
the bottom left and top right corners of the image depict different regions. We set the energy of the
other edges to Ei j := [1, |xi − x j|]>θ , where xi is the pixel intensity at node i. We train unsupervised on
the noisy mask (Figure 6.3(b)), then use the trained CRF’s MAP state for prediction (Figure 6.3(d)).9

We did not employ a bias node for this task, and simply set the regularization constant to λ = 1. All
experiments were carried out on an Apple MacBook laptop with 2.2 GHz Intel Core2 Duo processor
and 4 GB RAM.

Note that this is a large model with 10 000 nodes and 19 801 edges. Due to the sparsity of the asso-
ciated Kasteleyn matrix, we can nonetheless compute its log partition function in less than half a CPU
second, using the SuperLU sparse matrix factorisation package [19]. However it then takes over 200
CPU seconds to solve for the marginals, making optimization of the ML objective (6.1) computation-
ally unattractive. By contrast, we can compute the ground state of this model with Blossom V [67] via
the algorithm described in Section 5.2 in less than 100 CPU milliseconds. We can therefore efficiently
minimize the MM objective (6.3).

We estimated the smallest S/N ratio of the form 1:n for which we obtained a good segmentation.
Depending on the image, this occurred for n = 7 or 8. Figure 6.3 (right column) shows that at these
noise levels our approach is capable of recovering the original segmentation boundary quite well, with

9For presentation purposes we show the segmented image, obtained by masking the original image with our binary segmenta-
tion.
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(a) (b) (c) (d)

Figure 6.3: Boundary detection by maximum-margin training of grid Ising CRFs. (a) original image. (b) noisy
mask for S/N ratio of 1:8 (rows 1 and 2) resp. 1:7 (rows 3 and 4). (c) ground truth segmentation. (d) MAP
segmentation obtained from the Ising grid CRF trained on the noisy mask.
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less than 1% of nodes mislabeled. For S/N ratios of 1:9 and lower the system is unable to locate the
boundary; for S/N ratios of 1:6 and higher we obtain perfect reconstruction. Again this corresponds
closely to our human ability to visually locate the segmentation boundary accurately.

In further scalability tests we were able to use Blossom V to calculate the MAP state for a random
1500×1500 Ising grid with perimeter bias (a graph with 2.25 million nodes and 4.5 million edges) in
200 CPU seconds. It is worth mentioning that the approach of Pardella and Liers [98] is also able to
compute the MAP state of such problem instances. Despite the similarity, there are a few key differences
between the two approaches:

• Our method is a generalisation that can handle arbitrary planar graphs.

• Our construction uses the complementary mapping (Section 3.2.2) between even subgraphs in G0

and perfect matchings in the decorated graph Gd, instead of the direct mapping used in [98].

• We use Blossom V instead of Blossom IV. Although both implementations have the same worst-
case asymptotic time complexity, Blossom V is usually considered faster in practice [67].

We were also able to use Blossom V to compute the log partition function for a 600×600 image (a
graph with 0.36 million nodes and 0.72 million edges) in 100 CPU seconds. A vector of edge marginals
for the latter, however, would take over 100 CPU hours to compute.

6.4 Territory Prediction in Go

We apply planar Ising CRFs to territory prediction in the game of Go. We propose a two-stage graph
reduction of the position on the Go board grid, with the first stage used for parameter estimation and
the second for inference. We use our polynomial-time algorithms for both model parameter estimation
and computation of the MAP state for territory prediction.

6.4.1 The Game of Go in Machine Learning

Go, known as wei-qi in China and baduk in Korea, is a board game that originated in China over 4000
years ago. It is played on a 19 × 19 grid, though smaller boards are commonly used by beginners and
computers. Two players (black and white) alternate in placing stones on the intersections of the grid.
Once a stone is placed it cannot be moved, but it can be removed (captured or killed) if all its empty
neighbours (liberties) are occupied by opponent stones. Neighboring stones of the same color form
a contiguous block. Note that a block can contain a single stone. Stones in a block are surrounded
and captured as one. Players aim to create alive blocks, i.e., blocks that cannot be captured. The area
occupied by these alive blocks counts as their final territory. The winner of the game is the player who
controls the most territory at the end.

Computer Go

From these simple rules emerges a game of greater subtlety and strategic complexity than Chess. It is
not surprising then that there is great interest in creating computer programs that can play go. Unlike
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Figure 6.4: (a) A typical 9 × 9 endgame board position corresponding to a grid graph G(V,E). The player’s final
territory is his alive stones plus the area shaded with his color. Stones�,� and� are dead; all other stones are
alive. (b) Corresponding common fate graph G f (V f ,E f ). (c) Corresponding block graph Gb(Vb,Eb). � represent
stones, � represent surrounds, and � are neutral. Node size reflects the number of points in the block. Dashed red
lines indicate nodes of the group graph Gg(Vg,Eg).



§6.4 Territory Prediction in Go 79

Chess, however, go is not amenable to conventional game tree search. This is because its branching
factor of about 200 does not permit search tree expansion to a depth anywhere near that employed by
human players, who routinely look ahead dozens of moves. Static position evaluation is an even greater
challenge, since (again in contrast to Chess) individual stones carry little information. It is the details
of the shape and arrangement of entire groups of blocks of stones that determine their fate. At the same
time, that fate can depend on the precise location of a faraway individual stone, so it does not suffice to
simply combine the results of local searches.

Due to these difficulties, go programs of the past took an intensive knowledge-based approach,
combining many local searches with pattern matching on configurations of stones. The patterns were
typically handcrafted or harvested from search techniques. Recently, Monte-Carlo game-tree searches
have shown great promise on the small (9 × 9) go board, and considerable progress has been made on
19 × 19 boards. These Monte Carlo go programs critically depend on very fast evaluation of their leaf
nodes.

Go is the second-most researched board game after Chess [91]. Despite all this activity, go remains
a paradigmatic unsolved AI problem, with the best computer programs playing at the level of a strong
human amateur.

Machine Learning and Go

Go is a very interesting domain for machine learning: it is a finite, deterministic, discrete, zero-sum,
perfect-information game, and thus represents the closest we can come to a fully observable real-world
domain. Yet the domain is extremely complex — even its subproblems (e.g., ladders and endgame)
are known to be in PSPACE [18, 140]. It is generally acknowledged that the traditional knowledge
engineering paradigm to computer go is at a dead end, and future advances are expected to come from
machine learning and Monte Carlo techniques. Millions of recorded games between highly proficient
human players, including professionals, are available on the Internet. Now the challenge is to develop
techniques that effectively use all this data.

Territory Prediction

An important subproblem in go is territory prediction: given a board position, determine which player
controls each intersection. A player controls an empty intersection if his opponent cannot place stones at
that intersection without them being eventually captured10 (shaded empty intersections in Figure 6.4(a)).
A player controls a stone if that stone cannot be captured, making it alive10 (unshaded stones in Fig-
ure 6.4(a)); otherwise it is dead10 (shaded stones in Figure 6.4(a)).

Since the game is won by whoever controls more territory at the end, territory prediction amounts to
static evaluation and is therefore inherently difficult. In fact, a game of go ends as soon as both players
agree on their territory prediction — so by definition they disagree on it throughout the game.

Even the most sophisticated exact methods cannot exhaustively solve board positions that contain
more than 18 enclosed empty points (this is the case in 41% of the games in our 9 × 9 training set), and

10To be rigorous, these definitions would have to assume perfect play on both sides. Except for very restricted situations,
however, optimal play in Go is unknown; working definitions must therefore be relative to some notion of “reasonable” play. For
instance, in Figure 6.4(a) black could rescue� and� by joining them to an alive block with two eyes, but only if white were to
play quite irrationally. Less clear-cut cases are what makes Go territory prediction so challenging.
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take up to 200 seconds for a game they can solve [92, 93]. Therefore a heuristic approach is called for.
Schraudolph et al. [112] use temporal difference learning in convolutional neural networks to predict
territory; Wu and Baldi [142] employ a recursive neural network architecture. van der Werf et al. build
a series of classifiers that learn to estimate potential territory [2004], score final positions [2005], and
predict life and death [2005].

6.4.2 Go Positions as Graph Abstraction Hierarchies

Go positions are most naturally represented as graphs, suggesting the use of graphical models. These
graphs can have various levels of abstraction, forming an abstraction hierarchy [35]. We will use
different levels of that hierarchy for territory modelling and prediction.

Grid Graph

The go board defines a square grid graph G(V,E) whose intersections can be in one of three states:
black, white, or empty (Figure 6.4(a)). Stern et al. [119] model the territory distribution with an MRF
defined on G. Their system uses sampling and Loopy Belief Propagation (LBP) to learn just 6 pa-
rameters for node and edge potentials. We believe this is insufficient to model the complex interaction
between stones in go.

van der Werf et al. [130, 131, 132] obtain better prediction accuracy by avoiding graphical models
altogether. However, this forces them to describe each node of the grid with a plethora of hand-crafted,
domain-specific features, which are prone to cause overfitting.

Common Fate Graph

It is the properties of blocks, rather than individual stones, that determines their fate: blocks always
live or die as a unit. It is therefore inherently wasteful to model the individual stones of a block, as
the grid graph does. Worse, it is counterproductive: interactions between neighboring blocks, which
are essential to the game, may appear as hard-to-model long-range interactions at the grid level. It thus
makes sense to merge all stones in a block into a single node, and move information such as the size and
shape of the block — which would otherwise be lost — into the block’s node features (Figure 6.4(b)).
We will refer to such blocks as stone blocks. Graepel et al. [40] use this common fate graph G f (V f ,E f )
to train SVMs to discriminate between good and bad moves. One of the strongest learning-based go

program uses a neural network that also learns from a common fate graph representation [26, 27].

Block Graph

The common fate graph still represents empty grid intersections individually. Regions of empty inter-
sections do not have the common fate property; they can be (and usually are) divided up between the
players. Therefore collapsing them as well as stone blocks results in too impoverished a representation.
On the other hand, not collapsing them produces unwieldy, large graphs, especially early in the game.
We compromise by grouping empty intersections into three types before collapsing regions of the same
type. Specifically, we construct our block graph as follows:
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Classify the intersections of the grid graph G(V,E) (Figure 6.4(a)) into black stones �, white stones
�, and three types of empty intersections: black surround �, white surround � and neutral �. To
determine the type of all empty intersections we use a flood fill algorithm to find the Manhattan distances
from each intersection to the nearest black resp. white stone. Each intersection is then colored �, �,
or � depending on whether the distance to the nearest black stone is less than, equal to, or greater than
the distance to the nearest white stone. For instance, intersection 19 on the grid graph has neutral type
since its closest white stone	 and closest black stones� and� all lie a Manhattan distance of 2 away
(Figure 6.4(a)). Finally, we collapse all contiguous regions of intersections of the same type to obtain
the block graph Gb(Vb,Eb) (Figure 6.4(c)). From now on, blocks that are composed entirely of empty
intersections will be called empty blocks.

Our block graph provides a more succinct representation than the common fate graph, yet by clas-
sifying empty blocks into three types preserves the kind of information needed for predicting territory.
For instance, consider Figure 6.4(c): � and � are dead because they are in the opponent’s territory.
However, if there were more friendly (black) stones in the neighbourhood then they could be alive. It
is important to encode this potential for a status change (aji in go terminology), as it could affect our
prediction for neighbouring opponent blocks. We encode this by having black surround blocks (blocks
16 and 18 in Figure 6.4(c)). The block graph also concisely encodes the notion of eyes — small empty
regions surrounded by stones of a single color. Eyes are a literally vital concept in go, because a stone
block with two or more eyes cannot be captured.

Group Graph

Stone blocks of one color that share the same surround are very unlikely to end up with different la-
bels — in fact we have not found a single instance of such an occurrence in our set of 18 000 9 × 9
games. Since such groups of blocks often share the same fate (e.g., all live or all die), we can group
them together (dashed lines in Figure 6.4(c)). We use the resulting group graph Gg(Vg,Eg) for predic-
tion; for parameter estimation we use the block graph, because the fate of a group very much depends
on the shape of its constituent blocks, albeit shared amongst them.

The grid G, block Gb, and group Gg graphs are the first three levels in a 5-stage graph abstrac-

tion hierarchy of go positions introduced by Friedenbach, Jr. [35], who also presents an algorithm for
incrementally updating such a hierarchy. This hierarchical graph representation is intended to model
how proficient go players evaluate positions. Integrating yet higher levels of Friedenbach’s abstraction
hierarchy into a go learning program could be a promising direction for future work.

We note that the idea of graph abstraction hierarchies is also found in other fields, such as computer
vision. For example, an image can be decomposed into homogenous regions (e.g., sky, grass, building
etc.), while each region can be decomposed into separate objects and finally each object is composed of
individual pixels.

Planarity

We note that the go grid G, which is drawn on a plane board, is by definition planar. Since common fate
graph, block graph, and group graph are all derived from the grid graph via edge contractions (which
preserve planarity) they are also planar. This allows us to employ our exact polynomial-time algorithms
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from Chapter 5 for both model parameter estimation on the block graph and territory prediction on the
group graph.

6.4.3 Conditional Random Field Model

We will use the block graph Gb described in Section 6.4.2 to encode the conditional independence
assumptions of our Ising CRF model. Following (6.1) the L2-regularized negative log-likelihood LML(θ)
of the data under our model parameterized by θ can be written as

LML(θ) := 1
2 λ‖θ‖

2 + ln Z(θ) +
∑

(i, j)∈Eb

Jyb
i , yb

jK Eb
i j, (6.13)

where Z(θ) :=
∑

y
exp

 ∑
(i, j)∈Eb

Jyb
i , yb

jK Eb
i j

 (6.14)

is the partition function, and yb the binary labels specifying territory ( or ) of the nodes
(blocks) in Gb. Note that the original go positions can also have “neutral” territory, which does not
belong to any player. We deal with such cases separately in Section 6.4.4. Eb

i j := θ>φb
i j is the disagree-

ment cost of edge (i, j) ∈ Eb. We now consider how to compute the sufficient statistics φb
i j for every

edge (i, j) of our block graph.
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(a) Nodes (b) Edges

Figure 6.5: Computation of node and edge features of Gb. (a) Stone block, resulting in node feature vector x� =
[2, 4, 2, 1, 9]. For example, the 4th element is 1 since there is only one �, i.e., an intersection with 4 neighbours.
(b) Two neighbouring stone blocks, resulting in edge feature vectors x�� = [3, 3, 1, 0, 7] and x�� = [6, 3, 0, 0, 9].

Node Features

The fate of a block is largely determined by its shape and the arrangement of its nearby blocks. There-
fore we believe that it is crucial to accurately capture the shape of a block. Neighbour classification of
Vilà and Cazenave [134] provides a powerful way to summarise a block’s shape, which is particularly
important for empty blocks. Vilà and Cazenave [134] showed that in go, empty blocks with identical
neighbour classification have identical eye-forming potential.

For our node features we use an extension of neighbour classification. We let xi be the vector of
raw node features for block i ∈ Vb. For each intersection in a block (stone block or empty block)
we compute the number of adjacent points that are in the same block (Figure 6.5(a)). A block’s shape
feature is a vector of length five whose kth element counts the number of points with exactly k neighbours
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Table 6.3: Correspondence between node (left) resp. edge (center) types and parameters. Right: computation of
disagreement cost Ei j for two sample edge types. θt(i) denotes the parameter vector for a node of type t(i), while
θt(i, j) denotes the parameter vector for an edge of type t(i, j).

Node Node
Params. Types
θ� �

θ� � & �
θ� � & �

Edge Edge
Params. Types
θ�� �→ � & �→ �
θ�� �→ � & �→ �
θ�� �→ � & �→ �
θ�� �→ � & �→ �
θ�� �→ � & �→ �
θ�� � → � & � → �
θ�� �→ � & �→ �
θ�� � → � & � → �

Edge (i, j) with type ��
xi xi→ j x j→i x j
θ� θ�� θ�� θ�
θ�
>xi + θ��

>xi→ j + θ��
>x j→i + θ�

>x j

Edge (i, j) with type ��
xi xi→ j x j→i x j
θ� θ�� θ�� θ�
θ�
>xi + θ��

>xi→ j + θ��
>x j→i + θ�

>x j

in the same block. For completeness, the 5th element of xi stores the the total number of intersections
in the block.

Edge Features

Nearby blocks can interact with each other in a number of ways, for example:

• Two stone blocks can merge into one by connecting with each other.

• A stone block can become alive by forming two eyes in the nearby empty space.

• A stone block can surround an opponent block by reducing its liberties.

The edges of the block graph must capture and describe such interactions. We believe that the shape of
the boundary between two neighbouring blocks contains important information about their interaction.

For this purpose we define our edge features using a variant of neighbour classification [134]. Let
xi→ j be the vector of raw edge features for the edge (i, j) ∈ Eb as viewed from block i. For each point
in block i we compute the number of adjacent points that are in block j. We now let xi→ j be a vector of
length five whose kth element counts the number of points in block i with exactly k neighbours in block
j. For completeness, the 5th element of xi→ j stores the length of the boundary between i and j. Vector
x j→i is computed similarly, but with the roles of i and j reversed (Figure 6.5(b)). Note that the elements
of xi→ j and x j→i can be different. It is also worth noting that our edge features provide additional
information that is not conveyed by the node features alone. This contrasts with the common approach
of creating edge features that are simply some arithmetic combination (e.g., dot-product, magnitude of
difference) of node features.

Feature Processing

Since (6.13) provides for edge disagreement costs only, we move our node features into the features
of each adjoining edge. Because our edge features are non-commutative, we provide shape vectors for
both orientations. This means that the full feature vector for an edge (i, j) comprises of four parts, two
node feature vectors and two edge feature vectors: xi j := [xi, xi→ j, x j→i, x j] (Table 6.3, right). We
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Current Edge Neighbour Edges
Parameters Features Parameters Features

Nodes
θ� xi θ̃� xk

θ� x j θ̃� xm

θ̃� xn

Edges

θ�� xi⇒ j θ̃�� xk→i

θ�� x j⇒i θ̃�� xi→k

θ̃��
xm→i
xi→m

θ̃��
xn→ j
x j→n

i j

m n

k

Table 6.4: Parameters and features (left) used to compute the disagreement cost of edge (i, j) in a small block graph
(right). Neighbouring edges are shown in green.

perform normalisation and power expansion, replacing each feature value x ∈ N with 1/(x + 1), x/20,
and x2/400, and provide a constant bias feature set to 1. Such an expansion allows the Ising CRF to
capture non-linear interactions between the features.

Parameter Sharing

For each type of node and edge, we provide a single parameter vector that is shared between all nodes
resp. edges of that kind. There are three types of node parameters, one for each node type: stone (θ�),
surround (θ�), and neutral (θ�) (Table 6.3, left). There are eight types of edge parameters resulting
from all possible types of node pairings (Table 6.3, center). We let θt(i) and θt(i, j) denote the parameter
vectors for a node of type t(i) and edge of type t(i, j), respectively. We aggregate these 11 parameter
vectors into a single vector θ, and match input features with the appropriate parameters via a routing

matrix R that depends on the kind of edge present: φi j := Ri jxi j.

Neighbour Features

To assist the propagation of go knowledge along the graph, for each edge we also include the features,
weighted by θ̃, of its neighbouring nodes and edges. Table 6.4 shows the resulting features and parame-
ters for one particular edge (double blue line). With this new model, the final disagreement cost Ei j for
edge (i, j) becomes

Ei j = θ
>
t(i)xi + θ

>
t(i, j)xi→ j + θ

>
t( j,i)x j→i + θ

>
t( j)x j

+
∑

k∼i; k, j

(θ̃>t(k)xk + θ̃
>
t(k,i)xk→i + θ̃

>
t(i,k)xi→k) (6.15)

+
∑

k∼ j; k,i

(θ̃>t(k)xk + θ̃
>
t(k, j)xk→ j + θ̃

>
t( j,k)x j→k)

where ∼ denotes the adjacency relation between nodes, i.e., k ∼ i is a node k that is adjacent to node i.
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Parameter Estimation

We train our Ising CRF model on the block graph Gb by penalised maximum likelihood (ML) param-
eter estimation, which involves minimising the negative log-likelihood (6.13). Since this is a convex
optimisation problem, efficient quasi-Newton solvers such as LBFGS can be employed to good effect
[86, 95]. These solvers require the gradient of the log-likelihood

∂

∂θ
LML(θ) = λθ +

∑
(i, j)∈Eb

Jyb
i , yb

jK −
∂ ln Z(θ)
∂Eb

i j

φb
i j, (6.16)

where we compute ∂ ln Z(θ)/∂Eb
i j via the inverse of the Kasteleyn matrix (5.23).

Prediction

Recall that we train on the block graph Gb, but predict on the group graph Gg. Parameter estimation
on the block graph provides us with θ∗ := argminθ LML(θ). We use θ∗ to compute the disagreement
costs for the block graph Eb

i j := θ∗>φb
i j. These allow us to compute the disagreement costs of the group

graph:

Eg
g(i), g( j) :=

∑
(i, j)∈Eb

Eb
i j, (6.17)

where (g(i), g( j)) ∈ Eg and g(i) is the group of block i ∈ Vb. See Figure 6.6 for an example. We can

1 2 3

4 5 6

a b c

1 2 3

4 5 6

a+b+c

Figure 6.6: Left: Block graph Gb with edge disagreement costs a, b, c. Right: Corresponding group graph Gg.

now use blossom-shrinking to efficiently compute the MAP state of the group graph:

yg∗ := argmax
yg
P(yg|x; θ∗). (6.18)

We set the state of each block yb
i to the state of its parent group yg∗

g(i). Similarly, we set the state of each
intersection yi to the state of its parent block. Since Gb is generally not outerplanar (Section 5.1.2),
our parameter estimation model does not use a constant bias node, as was done in Section 5.1. For the
same reason, our prediction model does not use a constant bias node, and thus due to label symmetry
there are two possible MAP states. We resolve this ambiguity by a domain-specific heuristic: there are
usually (e.g., in 99.4% of our 9 × 9 games) more alive than dead stones. Of the two MAP states yg∗ we
therefore pick the one which maximises the number of alive stones, resolving ties randomly.
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6.4.4 Experiments

We now evaluate our Ising CRF model and inference algorithms in terms of their territory prediction
accuracy and speed, on several sets of final go positions at different board sizes.

Datasets

9 × 9 games. van der Werf et al. [130, 131, 132] have created a collection of about 18 000 9 × 9 games
that were played between 1995 and 2002 on the No Name Go Server (NNGS), whose territory has been
determined using a combination of manual labeling, GNU Go 3.6 [39], and their own classifiers. We
use a subset of this collection of games for our experiments: 1 000 games played between 1996 and
2002 for training and validation, and 906 games played in 1995 for testing. The average rank of ranked
players is 17 kyu in the training set and 12 kyu in the test set.

19 × 19 games. We had great difficulty in finding a sufficiently large collection of 19× 19 games whose
labels have been independently verified. Thus we developed our own heuristic scoring method to label
a set of games from the Kiseido Go Server (KGS), and picked only games labeled identically by our
scorer and the players themselves for the dataset. This heuristic scorer is completely independent from
our Ising CRF classifier and thus does not cause any bias. The training and test set consist of 1 000
games each, played between January 2005 and January 2003, respectively. The average rank of ranked
players is 11 kyu for both training and test sets.

Oversize games. We manually scored 22 games that were played on KGS in December 2004 with
extra-large board sizes ranging from 21 × 21 to 38 × 38. Compared to the 9 × 9 and 19 × 19 datasets,
these games had a higher average number of dead blocks and stones, making them a greater challenge
to score. The average rank of ranked players in these games was 15 kyu.

Territory Prediction Accuracy

Task. Given an endgame board position G we want to predict the label (,  or ) of
each intersection inV. However, our classifier can only make binary predictions. This is not a problem
though: by predicting  andwe obtain the location of all dead stones; once those are removed
identifying  intersections becomes simple. We use four measures of test error:

• Stone error is the percentage of misclassified stones inV.

• Block error is the percentage of misclassified stone blocks inVb.

• Game error is the percentage of games that have at least one misclassified stone block inVb.

• Winner error is the percentage of games whose winner (using Chinese scoring) is predicted in-
correctly.

Method. We trained our Ising CRF model on 1 000 block graphs until convergence, using LBFGS as the
optimizer. The regularizer λ was tuned for best performance, which was found at λ = 3/4. Predicted
territory was determined from the MAP state of the group graphs on the test set. We compared our
approach to four control methods:
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• The naive method of assuming that all stones are alive, i.e., always labelling � as  and � as
.

• GNU Go 3.6, an open-source go program that scores endgame positions by combining go-specific
knowledge with results from many local searches.

• A neural network (NN) that uses a total of 63 go-specific features of graphs at several levels of
abstraction. This is the best classifier from the collection built by van der Werf et al. [131] to
predict the final territory of 9 × 9 endgame positions.

• A simple MRF (just 6 parameters) trained by Stern et al. [119] on the grid graphs of 290 19 × 19
expert games. Inference is performed via 50 iterations of loopy belief propagation (LBP) to
compute approximate marginal expectations at each intersection, which are then thresholded to
yield a prediction. In contrast to our approach of using the MAP state, marginals can lead to
inconsistent labelings (for example see Figure 6.7, left). Since this method has no notion of blocks
and would therefore do poorly on the block error, we give it a helping hand in our comparison by
setting each block’s label to the label of the majority of its stones.

Results. Table 6.5 compares our approach with the controls on various board sizes. Our method (Ising 9
and Ising 19) significantly outperforms MRF, the only other learning method based on graphical mod-
els, on all board sizes. On 9× 9 it appears inferior to approaches that heavily rely on domain knowledge
(GnuGo and NN). However, it must be noted that this dataset was labelled using a combination of
GnuGo and NN classifiers in the first place [131], hence is quite likely biased towards these methods.

It is interesting to note that MRF is relatively better at stone error than block error. This is due to the
fact that MRF has no concept of blocks and treats all stones as individuals. Thus, unlike our method, an
error in one stone does not cause errors in other stones of the same block.

On 19 × 19 our method is clearly worse than GnuGo. To put this in perspective though, consider
that GnuGo takes about four orders of magnitude as long to make a prediction here (Section 6.4.4). Our
model trained on 9 × 9 positions (Ising 9) does not perform much worse here than the natively trained
Ising 19, indicating that we are able to transfer knowledge across board sizes. Figure 6.7, left shows a
sample position, with the errors made by each method marked.

To investigate their scalability, we also tested the graphical models on our small set of oversize
games. Even though players of differing skill levels on boards of differing sizes tend to reach different
types of final positions, our architecture manages a fair amount of information transfer; Figure 6.7, right
gives an example where our model made no error.

Territory Prediction Speed

Task. In this set of experiments, we compare the CPU times taken by various territory prediction
methods as a function of |Vg|. All experiments were performed on an Intel Pentium 4 running at 3GHz
with 1GB RAM and 512KB level 2 cache. We compare the following five methods:

• GNU Go 3.6 scoring the position in aftermath mode.

• The approach of Stern et al. [119]: 50 iterations of loopy belief propagation (LBP) to calculate
approximate marginal expectations on the grid graph.
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Size Algorithm Error (%)
Stone Block Game Winner

9 × 9

Naive 8.80 17.57 75.70 30.79
MRF 5.97 8.19 38.41 13.80

Ising 9 2.32 2.57 9.05 2.32
GnuGo* 0.05 — 1.32 —

NN* 0.19 ≤ 1.00 1.10 0.50

19 × 19

Naive 6.96 16.52 98.30 32.60
MRF 3.80 4.91 63.90 20.50

Ising 9 3.91 5.22 61.90 14.30
Ising 19 3.81 3.93 43.40 9.30
GnuGo 0.11 — 5.10 —

greater
than

19 × 19

Naive 10.25 19.64 100.00 31.81
MRF 6.83 7.80 100.00 22.73

Ising 9 6.64 6.95 95.45 13.64
Ising 19 5.02 4.52 81.82 9.09

*Bias alert: dataset creation involved these methods (see text for details).

Table 6.5: Prediction error of different methods for various board sizes. Naive is the naive error, MRF is the work
of Stern et al. [119], GnuGo is GNU Go 3.6 [39], NN is the work of [131], Ising 9 and Ising 19 is our method
trained on 9× 9 and 19× 19 games, respectively. We could not easily obtain the block and winner errors for GnuGo.
The minimum in each result column is boldfaced.

Figure 6.7: Left: a 19 × 19 endgame position showing the errors made by different methods. Stones marked with
� are misclassified by Naive, MRF and Ising CRF; � by Naive and MRF; 4 by Naive only. GnuGo made no errors
in this game. Notice how MRF misclassifies stones at R12 and S12 and yet manages to get the rest of the block
labelled correctly. Right: A 25 × 25 endgame position, whose territory assignment is predicted correctly by our
system trained on 19 × 19 boards. By comparison, MRF on the same position predicts 33 stones (in 4 blocks)
incorrectly.
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• “Brute force”: MAP state calculation using variable elimination with arbitrary elimination order-
ing, on the group graph.

• MAP state calculation using variable elimination with elimination ordering determined by the
min-fill heuristic [64], on the group graph.

• Our approach: MAP state calculation by running Blossom IV [17] on the expanded dual of the
group graph.

Results. Figure 6.8 shows that our approach (blossom) is about three orders of magnitude faster than
popular inference methods for graphical models, both exact (variable elimination) and approximate
(LBP). The knowledge-intensive GnuGo is an order of magnitude slower still, though admittedly far
more accurate. Only the primitive brute force method can compete in speed with the blossom-shrinking
approach on small graphs, as encountered in 9 × 9 go. However, its exponential complexity means that
it is useless for 19 × 19 go positions, let alone larger problems of any kind. Blossom-shrinking, by
contrast, scales as O(|Eg| |Vg|

3) in the worst case.
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Figure 6.8: Average CPU time taken for territory prediction methods as a function of |Vg|. Grey histogram
indicates the number of graphs of a given size: the two broad peaks correspond to board sizes 9 × 9 and 19 × 19..

6.4.5 Outlook and Discussion

We presented an exact and efficient method for territory prediction in go. Rather than the naive grid
graph, our method uses higher-order representations, namely the block and group graphs, to encode
dependencies. Our inference algorithm is highly efficient and scalable, yielding predictions orders of
magnitude faster than conventional approximate and exact graphical inference techniques. As a result,
we were able to predict territory on go boards as large as 38 × 38.

Our Ising CRF model could be improved in terms of its prediction accuracy. We suspect that our
generic shape-based features do not capture all the intricacies of life and death in go. Some domain-
specific feature engineering could greatly boost performance in that regard.

On the other hand, we note that Monte-Carlo go programs, which currently dominate computer go,
rely on fast rather than accurate static evaluation of their leaf nodes. While we have applied our model
to territory prediction, it is generic enough to be adapted to a wide range of computer go subproblems.
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The speed of inference in our model makes it suitable for leaf evaluation in game-tree searches and
Monte-Carlo go.

6.5 Conclusion

In this chapter we have demonstrated the suitability of our planar Ising CRF on three different tasks.
Although these are relatively simple tasks, they are sufficiently large to show that our approach is correct
and efficient. For parameter estimation we have used both penalized maximum likelihood and maximum
margin methods. We have shown that maximum margin is orders of magnitude faster than penalized
maximum likelihood. Furthermore, maximum margin converges to parameters that are superior for
prediction.

In terms of prediction, we have shown that the computation of MAP states via blossom-shrinking is
orders of magnitude faster than the computation of M3P states. In particular, we were able to obtain the
MAP state for a random 1500× 1500 Ising grid in 200 CPU seconds. We have found reconstruction via
MAP to be similar to that of M3P, despite the latter’s theoretical advantages [33].



Chapter 7

Non-Planar Ising Graphical Models

The algorithms described in Chapter 5 provide a foundation for approximate inference algorithms
for non-planar Ising graphical models. Importantly the method for calculating the ground state (Sec-
tion 5.2) also works exactly for non-planar graphs whose ground state does not contain frustrated non-
contractible cycles. In this chapter we discuss approximative algorithms for Ising graphical models
whose ground state does contain frustrated non-contractible cycles.

7.1 Edmond’s Blossom-Shrinking Algorithm

In Chapter 5 we have used the blossom-shrinking algorithm [23, 24] for computing the maximum-
weight perfect matchingM (Definition 14) of our expanded dual graph G∗E . We then usedM to obtain
the exact ground state of a planar model graph G. To understand the process for non-planar graphs G, we
begin by reviewing the blossom-shrinking algorithm, closely following the description of Kolmogorov
[67].

Let G(V,E) be an undirected weighted graph. Each edge e ∈ E has a corresponding weight ce. Our
goal is to compute a perfect matchingM∗ ⊆ E with the maximum weight

∑
e∈M∗ ce. We can represent

a perfect matching M ⊆ E with an incidence vector x ∈ {0, 1}|E|, where xe = Je ∈ MK. For a subset
S ⊆ V, let δ(S) be the set of boundary edges of S: δ(S) := {(i, j) ∈ E : i ∈ S, j ∈ V\S}. Let O be
the set of all subsets of V that have an odd number of nodes greater than one. The blossom-shrinking
algorithm efficiently solves the following integer linear program:

maximize
x

∑
e∈E

cexe (7.1)

subject to
∑

e∈δ({i})

xe = 1 ∀i ∈ V, (7.2)

∑
e∈δ(S)

xe ≥ 1 ∀S ∈ O, (7.3)

xe ≥ 0 ∀e ∈ E. (7.4)

(7.2) ensures that there is at most one edge inM∗ incident upon any node i ∈ V. If we select any subset
S with an odd number of nodes then at least one of those nodes must be matched to a node not in S,

91
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hence (7.3). Let y ∈ R|V|+|O| be a feasible dual vector, then the dual program is given as:

minimize
y

∑
i∈V

yi +
∑
S∈O

yS (7.5)

subject to slack(e) ≥ 0 ∀e ∈ E, (7.6)

yS ≥ 0 ∀S ∈ O, (7.7)

where slack(e) in Equation 7.6 denotes the reduced cost of edge e = (i, j):

slack(e) := ce − yi − y j −
∑

S∈O : e∈δ(S)

yS. (7.8)

An edge e is said to be tight if slack(e) = 0. A set S ∈ O is called full if
∑

e∈δ(S) xe = 1. Blossom-
shrinking is a primal-dual algorithm that maintains both an infeasible primal solution x (i.e., a non-
perfect matching) and a feasible dual solution y. The algorithm alternates dual updates that create new
tight edges with primal updates that increase the size of the proposed matching. Primal feasibility is
achieved when the matching becomes perfect, i.e., when

∑
e∈E xe = |V|/2. At convergence, x corre-

sponds to a perfect matching of maximal cost and the complementary slackness conditions are satisfied:

slack(e) > 0⇒ xe = 0 and (7.9)

yS > 0⇒
∑

e∈δ(S)

xe = 1. (7.10)

(7.9) states that edges in the matching must be tight. One potential concern is that the dual problem
(7.5) has an exponential number of variables yS. The algorithm’s efficiency is due to there being at
most O(|V|) subsets S ∈ O with a non-zero variable yS at any given moment. These subsets are called
blossoms:

Definition 42 A blossom of a graph G(V,E) is a subgraph Gb(Vb,Eb) such that the removal of any

single node i ∈ Vb (and its incident edges) leaves Gb with at least one perfect matching.

A blossom can also be defined recursively: it is a cycle containing an odd number of “pseudonodes,”
where a pseudonode is either a node in V or another blossom (dashed ovals in Figure 7.1(a)). Two
adjacent pseudonodes in a blossom are connected via a blossom-forming edge (red edges in Figure 7.1).
The key idea is that if we can match an edge coming out of a node inside a blossom, then we can recur-
sively match the remaining even number of nodes using only blossom-forming edges (Figures 7.1(b)
and 7.1(c)). Since blossom-forming edges are tight, such a completion of the matching is guaranteed to
be optimal.

7.1.1 Application to Non-Planar Graphs

For convenience we define an edge state of an Ising graphical model:

Definition 43 An edge state of an Ising graphical model defined on graph G(V,E) is a binary state

ye ∈ {−1, 1}|E| of its edges; its energy is given by E(ye) := 1
2
∑

(i, j)∈E(1 − ye
i j)Ei j.
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(a) (b) (c)

Figure 7.1: (a) A blossom containing another blossom as a pseudonode (dashed ovals). Blossom nodes and
blossom-forming edges are red, while all other nodes and edges are black. (b) and (c): optimal completion of the
matching (bold edges) when a node in a blossom is matched to an exterior node.

Edge states are an extension of node states: given any node state y with energy E(y), we can construct
an edge state ye with identical energy E(ye) = E(y) by assigning ye

i j := 2Jyi = y jK − 1, ∀(i, j) ∈ E.
However, the converse is not necessarily true, since there are edge states with no corresponding node
state. An edge state is globally consistent if it has a corresponding node state:

Definition 44 An edge state ye of an Ising graphical model defined on graph G(V,E) is globally con-
sistent iff

∏
(i, j)∈C ye

i j = 1 for all cycles C ⊆ E. An edge state ye of an Ising graphical model with an

embedded graph G(V,E,Π) is locally consistent iff
∏

(i, j)∈CΠ ye
i j = 1 for all those cycles CΠ ⊆ E that

are contractible in Π.

In other words, if an edge state ye is locally consistent then every contractible cycle in G (e.g., green
line in Figure 7.2) will have an even number of disagreement edges. However, the definition of local
consistency does not guarantee any consistency for edges on non-contractible cycles11 of G (e.g., blue
and red lines in Figure 7.2): if we label the nodes by walking around the hole of the torus, the label of
the final node may end up in contradiction to its starting label.

As described in Chapter 5, the maximum-weight perfect matchingM of our expanded dual graph
G∗E can be used to obtain the exact ground state of a planar model graph G. When G is non-planar,
however, blossom-shrinking only recovers the extended ground state of G:

Definition 45 An extended ground state of an Ising graphical model with an embedded graph G(V,E,Π)
is a locally consistent edge state with minimum energy.

7.2 Heuristics

For non-planar graphs blossom-shrinking only recovers the extended ground state, which in general
does not uniquely determine a ground state. Since the computation of the ground state of a non-planar

11A surface of genus g contains 2g kinds of non-contractible cycles. By applying homology transformations to these cycles we
can obtain every other cycle in the surface [28].
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(a) (b)

Figure 7.2: A contractible (green) and two non-contractible (blue and red) cycles on the surface of a torus. (a)
3D view of the torus (courtesy of Wikipedia). (b) the torus represented as a regular grid with periodic boundary
conditions: opposite boundary edges are identified with each other.

Ising graphical model is NP-complete [2], we must resort to approximative algorithms. In this section
we propose heuristic methods for obtaining ground states from the extended ground state of a non-planar
Ising graphical model.

7.2.1 Low-Genus Embedding

Non-planar graphs cannot be embedded in the plane, but every graph can be drawn on some orientable
surface such that no edges cross and each face is topologically a 2-disk, i.e., has no holes [138].

To reduce the number of non-contractible cycles in G, we would like to obtain an embedding of as
low a genus as possible. Unfortunately finding the lowest-genus embedding of a graph is NP-complete
[128]. However, for regular grids we can use a simple method for constructing a (not necessarily
optimal) low-genus embedding:

Consider an undirected binary graphical model with energy function (5.3) defined on a 6× 6 grid, as
shown in Figure 7.3(a). To construct an equivalent Ising graphical model we must connect every node
to a bias node (see Section 5.1). We connect all the nodes on the perimeter to the bias node by routing
the edges around the surface, as shown in Figure 7.3(b). We connect the remaining nodes through the
holes in the surface, as shown in Figure 7.3(c). Each hole in Figure 7.3(c) can route up to 4 edges (from
4 nodes) without any crossings (see Figure 7.3(b)). With this method an N × M grid can be embedded
on a surface with genus dN/2 − 1edM/2 − 1e.

7.2.2 Minimax Spanning Tree

In our Ising graphical model the extended ground state is an edge state ye ∈ {−1, 1}|E|, such that the
state of edge (i, j) is ye

i j := 1 − 2J(i, j) ∈ E\MK. Since the model graph is not planar, the complement
E\M may not be a cut. To disambiguate the node state we use a spanning tree, as in Section 6.2.3, to
obtain a minimax solution. We construct a maximum-weight spanning tree T (V,E′) of the model graph
G(V,E) whose edge weights are set to −Ei jye

i j, which is the local cost of disobeying the edge state ye.

http://wikipedia.org/
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(a) (b) (c)

Figure 7.3: Construction of a low-genus embedding for a regular 6 × 6 grid (a). (b) 6 × 6 grid with every node
(white circles) connected to the bias node (represented by multiple black disks). (c) The graph in (b) (omitted for
clarity) lies on top of the embedding surface (represented as a cube). Arrows indicate the routing of connections to
the bias node (yellow ball) through the 4 holes.

As before, we run Algorithm 1 on T (bold edges in Figure 7.5) to find the ground state y of the model
graph G.

We can also take advantage of the dual slack information provided by Blossom to construct a mini-
max spanning tree. For each edge (i, j) of the expanded dual graph G∗E the cost of disobeying Blossom’s
matching is the dual slack(i, j) (7.8). Consider the matching of G∗E shown in Figure 7.4(a). If we remove
edge (i, j) from the matching M, then we must add two of its neighbouring edges to M— one from
each side (one possible matching is shown in Figure 7.4(b)). Although we do not know which of the
neighbouring edges of (i, j) will be added toM, we can compute a lower bound on their cost. Hence
we can set the weight of edge (i, j) ∈ E′ to

slack(i, j) + min
k∈N(i)\{ j}

slack(i, k) + min
k∈N( j)\{i}

slack( j, k) , (7.11)

where N(i) ⊆ V is the set of neighbours of node i. Since slack(i, j) is always non-negative, (7.11) gives
a lower bound on the cost of changing the state of (i, j), i.e., it is a min-marginal for (i, j) [65]. This
is in contrast to using edge weights of the model graph G, which can be either positive or negative and
hence does not provide any bound.

7.2.3 Node Quenching with Implicit Lookahead

We propose a method for improving an approximate ground state via small, local moves which we call
node quenching. This method is based on Iterated Conditional Modes (ICM), which we describe below.

Iterated Conditional Modes

ICM [8] is a method that finds an approximate MAP state of a MRF. The algorithm begins with an
initial node state ŷ. During each iteration, for each node ICM selects the state that produces the largest
decrease in energy. This process is repeated until convergence, which is guaranteed to occur, and is
usually rapid in practice. The order of node updates can be arbitrary; Besag [8] proposes a raster scan
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i j i j

(a) (b)

Figure 7.4: (a) Blossom’s matchingM (bold edges) of the expanded dual graph G∗E (red). (b) a possible matching
of G∗E when the edge (i, j) is removed fromM.

whose direction is varied from one iteration to the next, thus avoiding possible directional effects. ICM
is sensitive to the initial estimate ŷ, especially in high-dimensional spaces where there are many local
minima. Besag [8] initialises ŷ to the state which is best locally:

ŷi = argmax
yi∈Y

P(Yi=yi | x, θ). (7.12)

We modify ICM as follows:

1. We initialize ŷ to the state given by the minimax spanning tree, which we know to be a good
starting point;

2. We prioritise the order in which nodes are considered;

3. We include an implicit one-step lookahead, which allows us to make certain uphill moves.

Prioritisation

For each node i ∈ V we compute the change in energy fi incurred by flipping that node’s state, i.e.,

changing it to the opposite state (we assume binary node states):

fi :=
∑

(i, j)∈E

Ei jye
i j. (7.13)

We control the order of the node flips by using a priority queue q = ( fi1 , . . . , fin ), where fi1 is at the head
of the queue and node i1 will be considered next. This queue prioritises nodes whose flipping produces
the greatest decrease in energy, i.e., fik ≤ fi j ∀k < j. The use of a priority queue ensures that promising
states are explored first, so that the method is less likely to get stuck in local minima. Once node i is
flipped the global energy changes by fi and now flipping node i will incur a cost of − fi. We also need to
update the change in energy of its neighbouring nodes, i.e., fk ∀(i, k) ∈ E; the cost of flipping all other
nodes is unaffected.
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Implicit One-Step Lookahead

Now suppose we make an uphill move fi > 0 that leads to a larger downhill move fk < − fi, where node
k is the best node to flip after flipping node i. However, if an uphill move fi > 0 does not immediately
lead to a larger downhill move, then − fi will remain at the head of the queue and we will have a never-
ending 2-cycle. We detect such cycles when we see node i twice in a row, and break them by setting
fi := ∞ and yi := −yi. This method is equivalent to a one-step lookahead, but without the cost of
checking every pair of nodes. We terminate the method when fi1 = ∞, i.e., when there is no node or
pair of nodes left whose flipping decreases the energy.

7.2.4 Tree Quenching

Node quenching makes small changes to the node state, as it only considers flipping individual or pairs
of nodes. We now introduce tree quenching, which is able to make large, global changes to the node
state. During each iteration, tree quenching flips the state of an edge of the minimax spanning tree
T (V,E′) (Section 7.2.2) that produces the greatest decrease in energy. We now show how to compute
the potential change in energy fek if the state of edge ek = (i, j) ∈ E′ is flipped. Split T into edge
(i, j) and the two disjoint subtrees it connects: T1(V1,E

′
1) and T2(V2,E

′
2), as shown in Figure 7.5. To

summarize:

i ∈ V1, j ∈ V2,

V1 ∪V2 = V, V1 ∩V2 = ∅,

E′1 ∪ {(i, j)} ∪ E′2 = E
′, E′1 ∩ E

′
2 = ∅. (7.14)

We want to flip the state of ek while keeping the state of all other edges in E′ unchanged. This corre-
sponds to flipping the state of all the nodes of one of the subtrees. For efficiency, we flip the nodes of
the smaller subtree. The edges of G whose state will change are those that connect the two subtrees,
i.e., the edges in the set E f = {(i, j) ∈ E : i ∈ V1, j ∈ V2}, which is a cut of G (dashed line in Figure
7.5). The change in energy incurred by flipping the state of edge ek is

fek :=
∑

(i, j)∈E f

Ei jye
i j. (7.15)

Once we have flipped the state of edges in E f we must update fek ∀ek ∈ E
′. This can be done efficiently

by noting that flipping the state of a non-tree edge (i, j) ∈ E\E′ only affects fek for edges ek that lie on
the path Π(i, j) ⊆ E′, which can be precomputed.

As in node quenching we use a priority queue q = ( fe1 , . . . , fen ), where fe1 is at the head of the
queue and edge e1 will be considered next. The tree quenching algorithm is shown in Algorithm 5.
After every iteration of the main loop Algorithm 5 needs to recompute the cost of many edges in T ,
making it considerably slower than node quenching. Hence we propose two versions of tree quenching,
which differ only in their termination criterion:

1. Fast: terminate when there is no edge whose flipping decreases the energy, i.e., when fe1 > 0.
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2. Slow: terminate when there are no edge or pair of edges whose flipping decreases the energy, i.e.,

when fe1 = ∞.

Note that slow tree quenching can be up to a magnitude slower than fast tree quenching (see right
column in Figure 7.9).

Figure 7.5: 5× 5 model grid graph G with edges of the minimax spanning tree T shown in bold. The two subtrees
T1 and T2 and the edge to be flipped are shown in blue, red and black respectively. The cut of G (dashed line)
crosses the edges whose state will change if the state of the bold black edge is flipped.

Algorithm 5 Tree Quenching

Input: model graph G(V,E), minimax spanning tree T (V,E′)
1. ∀ (i, j) ∈ E\E′ :

Compute and store the path Π(i, j) ⊆ E′

∀ k ∈ Π(i, j) : (initialize edge priorities in q)
fek := fek + Ei jye

i j

2. Main Loop:
(i, j) := q.pop()
Divide T into T1 and T2 as shown in (7.14)
Compute the cut E f = {(i, j) ∈ E : i ∈ V1, j ∈ V2}

∀ (p, q) ∈ E f :
∀ k ∈ Π(p, q) : (update edge priorities in q)

fek := fek − 2Epqye
pq

ye
pq := −ye

pq (flip the state of edges along the cut)
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7.3 Experiments

In Section 7.2 we proposed a number of heuristics for obtaining ground states from the extended ground
state of a non-planar Ising graphical model. We described a method for obtaining a low-genus embed-
ding (Section 7.2.1) and discussed methods for constucting a consistent ground state using a minimax
spanning tree (Section 7.2.2). We also suggested algorithms for finding a lower-energy state from a
given ground state (Sections 7.2.3 and 7.2.4). To measure the effect of each heuristic, we designed
inference algorithms with increasing levels of prediction accuracy:

• IS0: Compute the extended ground state using Blossom V. Approximate the ground state using
the minimax spanning tree with disagreement edge costs (Section 7.2.2).

• IS: Compute the extended ground state using Blossom V. Approximate the ground state using the
minimax spanning tree with blossom’s slacks (Section 7.2.2).

• IS0-N: Run IS0 and approximate the ground state using node quenching (Section 7.2.3).

• IS-N: Run IS and approximate the ground state using node quenching (Section 7.2.3).

• IS-FN: Run IS and approximate the ground state using fast tree quenching followed by node
quenching (Sections 7.2.3 and 7.2.4).

• IS-SN: Run IS and approximate the ground state using slow tree quenching followed by node
quenching (Sections 7.2.3 and 7.2.4).

We compared our inference algorithms to a variety of control algorithms, that are considered state-of-
the-art in MAP approximation:

• Iterated Conditional Modes (ICM) (see Section 7.2.3 and [8]). Implementation from [121].

• Primal-dual algorithm FastPD [71, 72].

• Sequential Tree Reweighting (TRW-S) (see Section 4.3.6 and [66]). Implementation from [121].

• Sequential max-product loopy belief propagation (BP-S) [66]. Implementation from [121].

• Max-product loopy belief propagation (BP-M) [122]. Implementation from [121].

In our experiments we found that FastPD does not converge to low energies. We believe that in our case
of random potentials, the LP relaxation used by FastPD is a poor approximation to the true energy. We
also found that ICM converges to poor solutions. Therefore, for the sake of clarity we omit the results
of FastPD and ICM.

7.3.1 Experimental Setup

We tested the algorithms on undirected binary graphical models with the energy function (5.3) defined
on a regular grid. As shown in Theorem 33, these models correspond to Ising graphical models defined
on the same grid, with every node connected to an additional bias node y0 := 0. We use the embedding
method described in Section 7.2.1. As identified in the literature [51, 66, 105, 121], the performance of
the control algorithms depends on the following factors:
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1. Number of cycles in the model graph.

2. Percentage of frustrated cycles (Definition 25) in the model graph.

3. Strength of unary versus pairwise potentials.

Computing the number of cycles in a graph is a difficult problem. For grids, however, the size of the
grid is a good measure for the number of cycles (Figure 7.6(a)). We can also use the size of the grid to
determine the genus of the embedding, which our algorithms depend upon. Similarly it is difficult to
compute the percentage of frustrated cycles in a graph. In grids the percentage of frustrated cycles is
dependent on the percentage of non-submodular edges (Figure 7.6(b)). Note that when the percentage
of non-submodular edges is 100% there are no frustrated cycles, since all cycles in the regular grid
have an even length. With the knowledge of these dependencies, we vary three parameters in our
experiments: the size of the grid N, the percentage of non-submodular edges α, and the strength of the
unary potentials E′i relative to that of the pairwise potentials E′i j. The latter is controlled by the variable
σ and can be interpreted as a type of signal-to-noise ratio (SNR). For each parameter set, we generate
100 grids, following the construction of Kolmogorov and Wainwright [69]:

• Sample node potentials from the normal distribution: E′i (0) ∼ N(0, 1) and E′i (1) ∼ N(0, 1).

• Set edge potential to E′i j(0, 0) = E′i j(1, 1) := 0 and E′i j(0, 1) = E′i j(1, 0) := λi j, where the random
variable λi j ∼ −|N(0, σ2)| with probability α and λi j ∼ |N(0, σ2)| with probability (1 − α).

All experiments were carried out on a Linux PC with 3 GB RAM and dual Intel Pentium 4 processors
running at 3.6 GHz, each with 2 MB of level 2 cache.

(a) (b)
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Figure 7.6: (a) Number of cycles in a regular grid as a function of its size (based on A140517 in [118]). (b)
Percentage of frustrated cycles in a regular grid as a function of the percentage of non-submodular edges.

7.3.2 Comparison with the Ground State

We first compared different algorithms relative to the true ground state. This enabled us to measure
the node error and the energy achieved by each algorithm relative to the minimal energy. Since the
computation of ground states in our large 3-dimensional parameter space is rather time consuming, we
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decided to explore only certain slices of our parameter space. In each such slice we varied one of the
three parameters, while keeping the other two parameters fixed:

• Fix σ = 1.0, α = 0.5 and vary the grid size N ∈ {4, 8, 16, 24, 32, 48, 64}, which corresponds to
the embedding genus of {1, 9, 49, 121, 225, 529, 961}.

• Fix σ = 1.0, N = 32 and vary α ∈ {0.01, 0.1} × {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• Fix α = 0.5, N = 32 and vary σ ∈ {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5}.

The relative energy was computed by comparing to the energy of the ground state, i.e., the minimal
energy. Let Et be the energy of the true ground state in trial t and Et

i be the energy achieved by
algorithm i in trial t. The relative energy for algorithm i is computed as

Ei =
1
T

T∑
t=1

Et

Et
i
, (7.16)

where T is the total number of trials. In the above we assume that Et and Et
i have the same sign, which

is the case in our experiments.

Energy vs Distance to the Ground State

We also looked at the Hamming distance of the approximate ground states obtained by the various
methods to the true ground state, normalized by the total number of nodes. Interestingly, we found that
while our heuristics tended to find good local minima farther from the true grounds state, the control
methods preferred inferior local minima closer to the true ground state (see Figure 7.7). This may reflect
different biases in these approximate optimizers, for instance in their disposition towards making small
vs. large moves in state space. The effect is pronounced here because we are optimizing over random
energy landscapes, which are very non-smooth.

In a machine learning application the edge potentials would reflect some underlying ground truth —
for instance, they might be derived from training data by maximum-margin parameter estimation (Sec-
tion 6.1.2). Unless the model is poorly chosen, good solutions (in terms of energy) would then necessar-
ily lie close (in state space) to the ground truth, and points close to the ground truth would necessarily
be good solutions. Under those circumstances distance to the optimum may be a useful stand-in for the
criterion that is actually being optimized, the energy. Here, however, there is no ground truth, and in a
random energy landscape these two quantities are effectively decoupled.

Minimax Spanning Tree

To determine whether it is best to use blossom’s slacks for the minimax spanning tree (Section 7.2.2)
we compared IS0, IS, IS0-N and IS-N in terms of the achieved energy, as shown in Figure 7.8. In terms
of the CPU running time all four algorithms were very similar, so we do not report it. Without any
quenching there is no significant difference between IS and IS0. However, once node quenching is used
IS-N overtakes IS0-N, showing that the minimax spanning tree is more powerful with blossom’s slacks.
Given this, we choose to use blossom’s slack variables for all further experiments. We also notice that
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Figure 7.7: A scatter plot of distance vs. energy, relative to the true ground state, for the approximate ground states
obtained by a range of methods and parameter settings.

IS-N is significantly better than IS. This shows that node quenching is quite beneficial. Hence, we also
omit IS from all further experiments.

Quenching: Order and Iterations

We have two types of quenching (node and tree) at our disposal, so how many times and in what order
should we use them? To answer the latter, we begin by noticing that it does not make sense to run
two quenchings of the same type in a row. This is because the second quenching will not have any
available moves. Thus the only remaining option is to alternate node quenching with tree quenching.
We verified that it is never beneficial to perform node quenching before tree quenching. This makes
sense, because one should always make large moves, as those of tree quenching, before applying small
local optimisations.

The next question we wanted to answer is whether running more quenching iterations is necessary.
Tree quenching followed by node quenching, followed by another tree quenching was only marginally
better than IS-SN in terms of the achieved energy, while being significantly slower. Similarly, we do not
expect that further quenching iterations can significantly decrease the energy, since most of the work is
already done during previous quenching iterations.

Tree Quenching

In our next set of experiments we analyzed the effects of tree quenching and compared its two running
modes. To answer the former, we measured the achieved reduction in energy when tree quenching was
used on top of node quenching (Figure 7.9). For all parameter settings we found that the reduction
in energy was significant. In particular, the amount of reduction increases with σ and the size of the
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grid (Figures 7.9(a) and 7.9(e)). Given the significant improvement in energy, the extra running time
incurred by tree quenching is a small price to pay. Hence we can confidently recommend the use of tree
quenching.

We also wanted to determine whether slow tree quenching is worth the additional running time
(Figure 7.9). As expected, IS-SN is better than IS-FN in terms of the achieved energy in all regimes.
Furthermore, the margin of improvement is nearly constant per experiment. The biggest improvement
is obtained when we vary α, in particular when α < 0.2. The ratio between the running times of the two
methods remains constant for a fixed grid size (Figures 7.9(d) and 7.9(f)). As we vary the grid size the
ratio varies between 2 and 6 for small and large grids, respectively (Figures 7.9(a) and 7.9(b)). Given
these results, one should prefer IS-SN over IS-FN for smaller grids (e.g., N ≤ 32), where the running
time is not an issue. For larger grids, the lower energy achieved by IS-SN is overshadowed by its slower
running time, and hence in such situations one might consider using IS-FN.

Comparison to Control Methods

After removing all our inferior algorithms we were left with just two Ising algorithms: IS-FN, IS-
SN. We decided to compare these to the control algorithms (TRW-S, BP-S and BP-M) in terms of the
achieved energy and CPU running time, as shown in Figure 7.9.

As discussed in Section 7.2.1, the performance of our algorithms should decrease as the genus
increases. However, our experiments did not confirm this, since IS-FN and IS-SN outperformed the
control algorithms for all genera (Figure 7.9(a)). One explanation is that all algorithms were affected
by the increased genus, therefore their rank remained relatively unchanged. In the range 0.1 < α < 0.9
our algorithms were better than the control algorithms in terms of the achieved energy (Figure 7.9(c)).
This shows that the control algorithms are best suited for submodular or nearly-submodular problems,
and confirms the results of previous studies [121]. We also found that the control algorithms become
significantly worse for larger σ (Figure 7.9(e)), while the performance of our algorithms is unaffected.

The running time of all algorithms increased with the genus, although it increased at a higher rate
for our algorithms. Nevertheless, our algorithms were faster than the control algorithms for genus 121
and lower. Unlike our algorithms, the running time of the control algorithms was also affected by the
percentage of non-submodularity (Figure 7.9(d)). We wanted to see what would happen if the control
algorithms were given the same CPU time as our methods. We increased the running time of the control
algorithms by a factor of 10 by changing their default configuration (see MRF-benchmarks code [121])
from 500 outer and 1 inner iterations to 1000 outer and 5 inner iterations, respectively. However this did
not significantly improve their performance in terms of the achieved energy, and often made it worse.

7.3.3 Overall Comparison

For our final set of experiments we wanted to answer the following important question: under what set
of conditions do our algorithms perform better resp. worse than the control algorithms? To answer this
question we compared our best algorithm (IS-SN) to the control algorithms TRW-S, BP-S and BP-M in
a large parameter space. This was feasible, because we avoided the cost of computing the ground states.
We explored all possible sets of parameters:
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Figure 7.10: Comparison of IS-SN to the three control algorithms. For every combination of parameters we
compute at 95% confidence level whether IS-SN is significantly better (dark red), significantly worse (dark blue)
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of the untested parameters settings, i.e., the remaining area (shown with corresponding lighter colors). (a) σ ∈
{0.5, 0.625, 0.75, 0.875, 1.0}. (b) σ ∈ {1.0, 1.5, 2.0, 2.5}.
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k 2 3 4 5 6 7 8 9 10
qk 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773

Table 7.1: Critical values qk for the two-tailed Bonferroni-Dunn test at the 95% confidence level. k is the number
of classifiers and includes the control classifier [20].

• Grid size N ∈ {4, 8, 16, 24, 32, 48, 64, 100}.

• σ ∈ {0.5, 0.625, 0.75, 0.875, 1.0, 1.5, 2.0, 2.5}.

• Non-submodularity α ∈ {0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

It was not feasible to plot the results of each experiment, since that would require a 4-dimensional
graph12. Instead, we decided to compare all the inference algorithms based on their average ranking,
and plot only the best ranked algorithms on a 3-dimensional graph. The rank of algorithm i for trial t is
computed as

Rt
i := 1 + |{k : Et

k < Et
i}| +

1
2 |{k : Et

k = Et
i , k , i}|, (7.17)

where Et
i is the energy achieved by algorithm i in trial t. The average rank of algorithm i is then

Ri :=
∑

t Et
i/T , where T is the total number of trials. Since we were comparing multiple algorithms,

rather than just two, we chose to use the Bonferroni-Dunn test over any variant of the paired t-test
[20, 22]. In particular, two algorithms i and j were considered significantly different at a 95% confidence
confidence level if

|Ri − R j| ≥ qk

√
k(k + 1)

6T
, (7.18)

where k is the number of algorithms and qk is the critical value given in Table 7.1.
We plotted the regions where IS-SN was significantly better, worse or equal (shown in red, blue and

green respectively) to the best of the control algorithms for σ ∈ {0.5, 0.625, 0.75, 0.875, 1.0} in Figure
7.10(a) and for σ ∈ {1.0, 1.5, 2.0, 2.5} in Figure 7.10(b). In these figures we set the value of the untested
region to the value of the closest (in Euclidean space) tested region.

In general, the region where IS-SN is better becomes larger asσ increases. When the node potentials
dominate (i.e., at σ = 0.5), our algorithm does not outperform the control algorithms. The situation
changes rapidly, however, as soon as the strength of the edge potentials increases relative to the node
potentials. Already at σ = 0.75, IS-SN is best in more than half of the available space, while for σ > 1.5
it is best nearly everywhere. Interestingly, at σ = 2.5 IS-SN outperformed the control methods even on
grids as small as 4 × 4. We expect these trends to continue for larger values of σ.

As we have observed previously (see Section 7.3.2), the relative performance of IS-SN does not
get worse with the increase in the grid’s size. The most likely explanation is that the size of the grid
affects all methods equally, meaning that their ranking relative to each other remains constant. This
demonstrates the potential of our approach to scale well to larger problems.

The only parameter setting where IS-SN was significantly worse than the control methods occurred
when the model had a low percentage of frustrated cycles, i.e., when α ≤ 0.1 and α ≥ 0.9. This should

12we need one axis for each of the three parameters, as well as another axis to display the value of the relative energy.
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come at no surprise, since the control methods are specifically designed to work for such submodu-
lar models. Notice that for all other parameter settings, IS-SN was equal or better than the control
algorithms.

In conclusion, we have found a large region in the parameter space where one should prefer IS-
SN over any other state-of-the-art algorithm. In particular, one should use our IS-SN for any binary
4-connected MRF whose edge potentials are either

• strongly non-submodular: 0.2 ≤ α ≤ 0.8; or

• slightly non-submodular and stronger than the node potentials: 0.1 ≤ α ≤ 0.9 and σ ≥ 1.5.

7.4 Conclusion

In this chapter we have proposed a number of heuristics that can be used for approximating the ground
state from the extended ground state of an Ising graphical model. These included: obtaining a low-genus
embedding, computing a minimax spanning tree with consistent edge states and methods for minimiz-
ing the energy of a node state (quenching). We have shown experimentally that all these heuristics
benefit our framework. Some of these heuristics are specific to our framework, while others, such as
quenching can be easily combined with any other inference framework. For example, one can compute
an approximate ground state with any given inference algorithm and then optimise the result with a
combination of node and tree quenching. This will be the focus of our future work.

We also compared our inference algorithms to state-of-the-art algorithms on random grid MRFs.
Our algorithms were able to achieve lower-energy states on a range of parameter settings, without being
significantly slower. We believe that there exist a range of non-trivial problems that are suitable for
our algorithms. One such problem is viral marketing in social networks [141]. In viral marketing
the task is to market a product to the “best” set of individuals in order to trigger the most widespread
adoption of the product. This task has been successfully modelled as a MRF, whose nodes represent
customers and edges correspond to relationships between customers [21, 103]. The network value of
a customer is the expected profit from sales to that customer. Importantly, this value not only depends
on the customer’s probability of buying the product, but also on his/her ability to persuade his friends,
family and colleagues in buying the product. Hence if a customer is highly connected or is a well-know
opinion leader (e.g., celebrity) then his/her network value is dominated by his/her ability to persuade
others. In terms of the underlying MRF, this corresponds to large edge potentials, i.e., σ ≥ 1.5 in our
model. Therefore, we believe that our inference algorithms would be ideally suitable for such a task,
especially if the underlying graph was large, e.g., Facebook, MySpace or LinkedIn.

A number of non-submodular computer vision applications have been proposed recently: texture
restoration, image stitching, diagram recognition, super resolution, new view synthesis and image de-
convolution [68, 105]. In all of these applications, however, either the node potentials are too strong
or there is not enough non-submodularity, making them unsuitable for our algorithms. We believe that
current computer vision problems are designed to suit current available inference algorithms and vice-
versa. This selection bias impedes progress in both applications and in the development of inference
algorithms for non-submodular problems. The presence of our framework, that does not rely on sub-
modularity, should help to dissolve this bias and open doors for new applications in computer vision
and other fields.



Chapter 8

Conclusion

This thesis introduced the Ising graphical model. This is an undirected graphical model that obeys the
constraints of the Ising model, i.e., a binary-labeled energy function that is a sum of edge disagreement
costs. Despite its simplicity, we proved that the Ising graphical model with an additional bias node is
equivalent to any binary-labeled pairwise MRF (Theorem 33).

Our work can be described in two parts. In the first part (Chapters 5 and 6) we discussed exact infer-
ence algorithms for the planar Ising model, while in the second we looked at approximative algorithms
for ground states of non-planar Ising models.

In contrast to previous approaches, our construction uses the complementary mapping (Section
3.2.2) between even subgraphs in G0 and perfect matchings in the decorated graph Gd, where G0 is
the dual graph G∗ with unmodified edge weights. This gives us a complementary connection between
graph cuts of the model graph G and perfect matchings in Gd. We explain the role of planarity (resp.

triangulation) in making this relation a surjection (resp. bijection). Our method for decorating the graph
is similar to Kasteleyn’s (Definition 24), but does not need dummy nodes since we plane triangulate
G. Our construction is conceptually simpler than previous constructions, since we do not explicitly
construct the dual graph and perform all operations in the model graph G.

We show how our framework can be used for the exact computation of the partition function, worst
margin violators, marginal edge probabilities and lowest-energy (ground) states in the planar Ising
graphical model. This allows us to implement popular parameter estimation frameworks of maximum-
margin and maximum-likelihood. By reusing the proto-Kasteleyn matrix H (Section 5.3.3) we speed up
the parameter estimation loop by orders of magnitude. We demonstrated that our inference algorithms
are efficient and effective on a number of real-world machine learning problems; in particular, we found
that maximum margin is orders of magnitude faster than penalized maximum likelihood, as well as
converging to superior parameters.

In the second part, we proposed a number of heuristic methods for approximating the ground state
of a non-planar Ising graphical model. These novel contributions included: obtaining a low-genus
embedding, computing a minimax spanning tree with consistent edge states and methods for minimizing
the energy of a node state (quenching). We conducted a thorough experimental comparison to show that
our framework benefits from every heuristic. When combined with our best heuristics, our inference
algorithm outperforms current state-of-the-art algorithms by achieving lower-energy states on a range of
parameter settings. Finally, we characterise the set of MRF models for which our inference algorithms
are preferable over other algorithms.
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8.1 Future Work

There are a number of extensions for this work. These can be divided into two categories: new applica-
tions and algorithmic developments. Some possible new applications are the following:

• The Ising graphical model can also implement α-expansion moves and α-β-swaps [12]. This will
allow us to deal with multi-labeled models and give rise to a number of new applications.

• Our exact inference algorithms replace the submodularity constraint of graph cut methods with
a planarity constraint. The existence of two distinct tractable frameworks for inference in binary
graphical models implies a powerful hybrid. Such a hybrid could be used when the model graph
has biconnected components that are either planar or submodular. It would be interesting to see
whether such a hybrid approach can be used for less obvious situations.

• As we discussed in Chapter 7, our algorithms for non-planar Ising graphical models are well-
suited for the task of viral marketing [141]. This is because such tasks can be modeled as a binary
pairwise MRF with large edge potentials, i.e., σ ≥ 1.5 in our model (Section 7.3.1). These tasks
require efficient inference algorithms for large graphs (social networks).

Some possible algorithmic developments are the following:

• There may still be other constructions for computing the partition function and ground states of an
Ising model. For example, to our knowledge nobody has tried to use the complementary mapping
(Section 3.2.2) where G0 is the model graph G.

• Our quenching methods (Sections 7.2.3 and 7.2.4) can be used to improve the node state com-
puted by any inference algorithm. This opens up many possibilities for new algorithms, which
may turn out to be better than current algorithms on particular types of models.

• It is possible to use our framework to efficiently compute the exact min-marginals [4], instead
of approximate min-marginals that we are currently computing (Section 7.2.2). These can be
used to construct a better minimax spanning tree, which may lead to stronger performance of our
algorithms.



Bibliography

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the solution of

Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, USA, 2000.

[2] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics A:

Mathematical, Nuclear and General, 15(10):3241–3253, 1982.

[3] F. Barahona, R. Maynard, R. Rammal, and J. P. Uhry. Morphology of ground state of two-
dimensional frustration model. Journal of Physics A: Mathematical and General, 15:673–699,
1982.

[4] Dhruv Batra and Tsuhan Chen. Dynamic planar-cuts: Efficient computation of min-marginals
for outer-planar models. NIPS Workshop on Discrete Optimization in Machine Learning, 2009.
http://www.ece.cmu.edu/∼dbatra/publications/assets/batra discml nips09.pdf.

[5] Peter Benner, Ralph Byers, Heike Fassbender, Volker Mehrmann, and David Watkins. Cholesky-
like factorizations of skew-symmetric matrices. Electronic Transactions on Numerical Analysis,
11:85–93, 2000.

[6] A. Bertoni, P. Campadelli, G. Gangai, and R. Posenato. Approximability of the ground state
problem for Ising spin glasses. Journal of Complexity, 13:326–339, 1997.

[7] Julian Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion).
Journal of the Royal Statistical Society. Series B, 36(2):192–236, 1974.

[8] Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society

B, 48(3):259–302, 1986.

[9] I. Bieche, R. Maynard, R. Rammal, and J. P. Uhry. On the ground states of the frustration model
of a spin glass by a matching method of graph theory. Journal of Physics A: Mathematical and

General, 13:2553–2576, 1980.

[10] S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Physical Review Letters,
86:5211–5214, 2001.

[11] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified O(n) planarity by
edge addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004. Reference
implementation (C source code): http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3/
planarity.zip.

111

http://www.ece.cmu.edu/~dbatra/publications/assets/batra_discml_nips09.pdf
 http://jgaa.info/accepted/2004/ BoyerMyrvold2004.8.3/planarity.zip
 http://jgaa.info/accepted/2004/ BoyerMyrvold2004.8.3/planarity.zip


112 BIBLIOGRAPHY

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[13] Stephen G. Brush. History of the Lenz-Ising model. Reviews of modern physics, 39:883–893,
1967.

[14] James R. Bunch. A note on the stable decomposition of skew-symmetric matrices. Mathematics

of Computation, 38(158):475–479, April 1982.
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