22 research outputs found

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms

    UNA COMPARACIÓN DE REDUCCIÓN DE RUIDO EN IMÁGENES DIGITALES UTILIZANDO UN MODELADO ESTADÍSTICO DE COEFICIENTES WAVELET Y FILTRADO DE WIENER

    Get PDF
    Este trabajo presenta un método de disminución de ruido en imágenes digitales, basado en un enfoque Bayesiano de dos etapas con ajuste empírico. Se estiman los coeficientes de una transformada wavelet de la imagen donde se ha reducido el ruido, utilizando una estimación lineal con un criterio de minimización del error cuadrático medio. Estos coeficientes constituyen una estimación deseable de la varianza de los coeficientes wavelet de la imagen libre de ruido

    Wavelets and Imaging Informatics: A Review of the Literature

    Get PDF
    AbstractModern medicine is a field that has been revolutionized by the emergence of computer and imaging technology. It is increasingly difficult, however, to manage the ever-growing enormous amount of medical imaging information available in digital formats. Numerous techniques have been developed to make the imaging information more easily accessible and to perform analysis automatically. Among these techniques, wavelet transforms have proven prominently useful not only for biomedical imaging but also for signal and image processing in general. Wavelet transforms decompose a signal into frequency bands, the width of which are determined by a dyadic scheme. This particular way of dividing frequency bands matches the statistical properties of most images very well. During the past decade, there has been active research in applying wavelets to various aspects of imaging informatics, including compression, enhancements, analysis, classification, and retrieval. This review represents a survey of the most significant practical and theoretical advances in the field of wavelet-based imaging informatics

    Natural Image Statistics for Natural Image Segmentation

    Get PDF
    Building on recent progress in modeling filter response statistics of natural mages we integrate a statistical model into a variational framework for image segmentation. Incorporated in asound probabilistic distance measure the model drives level sets toward meaningful segment at ions of complex textures and natural scenes. Despite its enhanced descriptive power our approach preserves the efficiency of level set based segmentation since each connected region comprises two model parameters only. We validate the statistical basis of our model on thousands of natural images and demonstrate that our approach outperforms recent variational segment at ion methods based on second-order statistics

    Distributed single source coding with side information

    Full text link

    Spherical coding algorithm for wavelet image compression

    Get PDF
    PubMed ID: 19342336In recent literature, there exist many high-performance wavelet coders that use different spatially adaptive coding techniques in order to exploit the spatial energy compaction property of the wavelet transform. Two crucial issues in adaptive methods are the level of flexibility and the coding efficiency achieved while modeling different image regions and allocating bitrate within the wavelet subbands. In this paper, we introduce the "spherical coder," which provides a new adaptive framework for handling these issues in a simple and effective manner. The coder uses local energy as a direct measure to differentiate between parts of the wavelet subband and to decide how to allocate the available bitrate. As local energy becomes available at finer resolutions, i.e., in smaller size windows, the coder automatically updates its decisions about how to spend the bitrate. We use a hierarchical set of variables to specify and code the local energy up to the highest resolution, i.e., the energy of individual wavelet coefficients. The overall scheme is nonredundant, meaning that the subband information is conveyed using this equivalent set of variables without the need for any side parameters. Despite its simplicity, the algorithm produces PSNR results that are competitive with the state-of-art coders in literature.Publisher's VersionAuthor Post Prin

    Hierarchical quantization indexing for wavelet and wavelet packet image coding

    Get PDF
    In this paper, we introduce the quantization index hierarchy, which is used for efficient coding of quantized wavelet and wavelet packet coefficients. A hierarchical classification map is defined in each wavelet subband, which describes the quantized data through a series of index classes. Going from bottom to the top of the tree, neighboring coefficients are combined to form classes that represent some statistics of the quantization indices of these coefficients. Higher levels of the tree are constructed iteratively by repeating this class assignment to partition the coefficients into larger Subsets. The class assignments are optimized using a rate-distortion cost analysis. The optimized tree is coded hierarchically from top to bottom by coding the class membership information at each level of the tree. Context-adaptive arithmetic coding is used to improve coding efficiency. The developed algorithm produces PSNR results that are better than the state-of-art wavelet-based and wavelet packet-based coders in literature.This research was supported by Isik University BAP-05B302 GrantPublisher's Versio

    Wavelet-based image denoising using nonstationary stochastic geometrical image priors

    Full text link
    corecore