81,846 research outputs found

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios. GIS Pilot Applications

    Get PDF
    The project 3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications has been devised with the intention to deal with the demand for research, innovation and applicative methodology on the part of the international programme, requiring concrete results to increase the capacity to know, anticipate and respond to a natural disaster. This project therefore sets out to develop an experimental methodology, a wide geodatabase, a connected performant GIS platform and multifunctional scenarios able to profitably relate the added values deriving from different geotechnologies, aimed at a series of crucial steps regarding landscape reconstruction, event simulation, damage evaluation, emergency management, multi-temporal analysis. The Vesuvius area has been chosen for the pilot application owing to such an impressive number of people and buildings subject to volcanic risk that one could speak in terms of a possible national disaster. The steps of the project move around the following core elements: creation of models that reproduce the territorial and anthropic structure of the past periods, and reconstruction of the urbanized area, with temporal distinctions; three-dimensional representation of the Vesuvius area in terms of infrastructuralresidential aspects; GIS simulation of the expected event; first examination of the healthcareepidemiological consequences; educational proposals. This paper represents a proactive contribution which describes the aims of the project, the steps which constitute a set of specific procedures for the methodology which we are experimenting, and some thoughts regarding the geodatabase useful to “package” illustrative elaborations. Since the involvement of the population and adequate hazard preparedness are very important aspects, some educational and communicational considerations are presented in connection with the use of geotechnologies to promote the knowledge of risk

    Social Media for Cities, Counties and Communities

    Get PDF
    Social media (i.e., Twitter, Facebook, Flickr, YouTube) and other tools and services with user- generated content have made a staggering amount of information (and misinformation) available. Some government officials seek to leverage these resources to improve services and communication with citizens, especially during crises and emergencies. Yet, the sheer volume of social data streams generates substantial noise that must be filtered. Potential exists to rapidly identify issues of concern for emergency management by detecting meaningful patterns or trends in the stream of messages and information flow. Similarly, monitoring these patterns and themes over time could provide officials with insights into the perceptions and mood of the community that cannot be collected through traditional methods (e.g., phone or mail surveys) due to their substantive costs, especially in light of reduced and shrinking budgets of governments at all levels. We conducted a pilot study in 2010 with government officials in Arlington, Virginia (and to a lesser extent representatives of groups from Alexandria and Fairfax, Virginia) with a view to contributing to a general understanding of the use of social media by government officials as well as community organizations, businesses and the public. We were especially interested in gaining greater insight into social media use in crisis situations (whether severe or fairly routine crises, such as traffic or weather disruptions)

    Deep learning models for road passability detection during flood events using social media data

    Get PDF
    During natural disasters, situational awareness is needed to understand the situation and respond accordingly. A key need is assessing open roads for transporting emergency support to victims. This can be done via analysis of photos from affected areas with known location. This paper studies the problem of detecting blocked / open roads from photos during floods by applying a two-step approach based on classifiers: does the image have evidence of road? If it does, is the road passable or not? We propose a single double-ended neural network (NN) architecture which addresses both tasks at the same time. Both problems are treated as a single class classification problem by the usage of a compactness loss. The study is performed on a set of tweets, posted during flooding events, that contain (i)~metadata and (ii)~visual information. We study the usefulness of each source of data and the combination of both. Finally, we do a study of the performance gain from ensembling different networks. Through the experimental results we prove that the proposed double-ended NN makes the model almost two times faster and memory lighter while improving the results with respect to training two separate networks to solve each problem independently
    corecore