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Abstract: During natural disasters, situational awareness is needed to understand the situation and
respond accordingly. A key need is assessing open roads for transporting emergency support to
victims. This can be done via analysis of photos from affected areas with known location. This paper
studies the problem of detecting blocked/open roads from photos during floods by applying a
two-step approach based on classifiers: does the image have evidence of road? If it does, is the
road passable or not? We propose a single double-ended neural network (NN) architecture which
addresses both tasks simultaneously. Both problems are treated as a single class classification problem
with the use of a compactness loss. The study was performed on a set of tweets, posted during
flooding events, that contain (i) metadata and (ii) visual information. We studied the usefulness of
each data source and the combination of both. Finally, we conducted a study of the performance
gain from ensembling different networks. Through the experimental results, we prove that the
proposed double-ended NN makes the model almost two times faster and the load on memory
lighter while improving the results with respect to training two separate networks to solve each
problem independently.

Keywords: flood detection; road passability; image classification; emergencies; social media;
deep learning

1. Introduction

In the last decades, the frequency and intensity of natural disasters has risen significantly.
According to worldwide data from the Centre for Research on the Epidemiology of Disasters [1],
about 12 times more natural disasters events were registered in 2017 compared to in 1950. In Figure 1,
the dramatic increase in these events is shown, which comprise mass movements, volcanic activities,
wild-fires, landslides, earthquakes, extreme temperatures, droughts, extreme weather, floods and
epidemics. It can be noted that flood events were particularly frequent; in 2017 alone, floods represented
approximately 39% of global natural disasters. On top of the tragic loss of human lives and
infrastructures, natural disasters come at a large cost to governments.

Appl. Sci. 2020, 10, 8783; doi:10.3390/app10248783 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7850-4776
https://orcid.org/0000-0001-9086-8679
https://orcid.org/0000-0003-1111-4217
https://orcid.org/0000-0002-1263-7522
http://www.mdpi.com/2076-3417/10/24/8783?type=check_update&version=1
http://dx.doi.org/10.3390/app10248783
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 8783 2 of 22

Figure 1. The occurrence of natural disasters and flood events since 1950. The natural disasters set is
characterized by the following phenomena: mass movements, volcanic activities, wildfires, landslides,
earthquakes, extreme temperatures, droughts, extreme weather, floods and epidemics. The chart shows
a sensible increase in this kind of events, which, by 2017 has increased by over a factor of 10 with
respect to 1950. Another important aspect is the percentage of incidence of flood events, representing,
on average, 30% of the overall natural disasters [2].

The European Commission (EC) estimated that, since 2005, natural disasters have cost the
European Union (EU) close to 100 billion euros. However, this cost can be significantly reduced
by investing in risk prevention: the EC stated that for every 1 euro spent on prevention, 4 euros or
more could be saved in response. In this respect, with the “cohesion policy”, the EU allocated 8 billion
euros for climate change adaptation, risk prevention and management over the 2014–2020 period [3].
Those investments generated several projects and research opportunities, from which this work is
taken. The ability to detect the insurgence of such problems in a timely manner is a powerful tool for
the bodies in charge of protecting and guaranteeing citizens’ safety.

In this work, we are going to focus on flood events and specifically, on assessing the status of roads
after floods, since knowing the best route to access the affected areas is crucial to transport emergency
support to victims. This can be done via analysis of photos from affected areas with known location.
Such photos can be: (i) solicited via dedicated apps, such as UN-ASIGN [4,5] and I-REACT [6,7],
or (ii) harvested from unsolicited sources such as social media, as people frequently share pictures
during emergencies. The use of apps and social media to engage the civil population is of increasing
interest and can be useful for first responders.

Certainly, social media is not largely known and adopted as an emergency reporting tool, but there
is evidence [8] of a large number of posts that provide direct proof of occurring natural disasters,
which, if properly processed, could help in the handling of the emergencies. The need for sensibility
regarding natural disasters and the variety of data to deal with make the research community itself an
active player in those topics and it generates numerous important and effective conferences.

The objective is, given a collection of posts (including images) related to floods, determining
whether: (i) there is Evidence of Roads and, in a positive case, (ii) there is Evidence of Road Passability.
In the first case, we are more interested in asserting the presence of a road in the picture: this means the
road can be directly visible or there are enough elements justifying its existence, such as the presence
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of traffic lights or vertical signs. On the other hand, the second goal aims to determine whether the
identified road is in good condition to be transited. In the flood context, the evidence of road passability
means that the road is completely clean or it can be partially or totally covered by water, but there
must be evidence that vehicles or people can still pass through it.

This paper has been inspired by the Flood classification challenge from MediaEval 2018, where we
presented an algorithm that predicted if there was evidence of road and if so, if the road was passable.
We presented an algorithm which achieved the best results in the challenge [9]. The work presented in
this paper has three goals:

• Provide a more detailed explanation of the work presented in [9], which was published in the
form of an extended abstract due to the page limitation.

• Contextualize our results with all the results from the challenge participants.
• Introduce two major modifications to the algorithm, namely a new loss and a new architecture

which combines the two problems into a single network, which introduces an almost 10% gain
in performance for the passability task while maintaining the road evidence task performance.
Moreover, we make the problem end-to-end and the solution almost 90 times faster and lighter,
obtaining a model that can be feasibly integrated into a real-life solution.

The paper is organized as follows. Section 2 introduces state-of-the-art techniques, focusing on
the ones presented in the same competition. Then, Section 3 focuses on the quantitative and qualitative
analysis of the available data and how they are used to build the dataset. The approaches developed
specifically to deal with textual and picture information are explained in Section 4 and evaluated
in Section 5, where the results are compared with those of the other techniques presented in the
MediaEval 2018 competition. Finally, conclusions and improvements planned for the future are
described in Section 6.

2. Related Work

In the twenty-first century, our social interactaction habits mainly revolve around smartphones
and IoT-devices. The Internet in general and social media represent a new way for us to learn and
communicate. In a personal Facebook or Twitter profile, it is easy to find personal information about
daily activities, but also news about real-time events. During natural disasters, social media represents
a huge source of information from which, if properly processed, it is possible to extract valuable data
for emergency management organizations. Indeed, the research literature presents several studies to
detect, collect and process valuable information [10–12]. Concerning flood events, general approaches
aim to detect flood events [13–15], to segment water regions [16], or to estimate water level [17].
Other approaches aim to examine details, such as the presence of people [18,19], the identification of
the most affected areas [11], or the identification of flooded roads and their viability. This last topic is
addressed in our work, and it is thought to be an extension of the approaches presented in the MediaEval
2018 conference. Therefore, this section continues introducing the methods submitted to the MediaEval
challenge. The techniques are developed to deal with the two main kinds of data available from social
media—metadata and images. As extensively described in Section 3, metadata are composed by textual
information (e.g., text of the post, title) and punctual information (e.g., coordinates, post creation date,
post author reference), while the images are PNG or JPG pictures. The metadata information was
approached in many ways. A simple approach was proposed by Zhao et al. [20]. They manually
created a set of rules which, leveraging on the textual part of the tweets, look for n-grams (subset of
n contiguous words in the same sentence) representing strings of lexical items they would expect to
occur in tweets related to road passability. Other works, such as the ones proposed by Hanif et al. [21]
and Moumtzidou et al. [22] started with a pre-processing of the tweet texts—first removing hyperlinks,
punctuations and symbols and performing the word tokenization, then removing the stop-words
and performing word stemming. The processed information was enriched by adding other metadata
features, such as user tags. Another work by Kirchknopf et al. [23] proposed to check the metadata



Appl. Sci. 2020, 10, 8783 4 of 22

language feature and it increased the number of English tweets by translating the ones written in other
languages. This simple step avoids the need to handle multiple languages simultaneously, which is still
an open problem in the field of Natural Language Processing. To be properly processed by classifiers,
words in tweets are then translated into numerical features. This step was made through the use of
(i) pre-trained word embeddings, which convert words into numerical vectors, such as fasttext [20,24],
Word2Vec [25] or GloVe [26], and/or (ii) statistical features, like Term Frequency—Inverse Document
Frequency (TF-IDF) [27]. Numerical features are then used to train models such as Support Vector
Machines (SVM) or Convolutional Neural Networks (CNNs) [28] for the final classification.

Regarding the visual information, two approaches were mainly adopted on pictures: (i) using
visual descriptors and (ii) extracting features from pre-trained CNNs. In the first case, the aim was to
describe the images through a set of discrete information that could lead the classifier to improve the
performances on the tasks. Several descriptors were already available from the dataset: Color and Edge
Descriptor (CEDD) [29], Color Layout (CL) [30], Fuzzy Color and Texture Historgram (FCTH) [31],
Edge Histogram (EH) [32], Joint Composite Descriptor (JCD) [33] and Scalable Color Descriptor
(SCD) [34]. In the latter case, hidden layers of CNNs are used as feature descriptors. State-of-the-art
CNNs such as AlexNet [35], DenseNet201 [36], InceptionV3[37], InceptionResNetV2 [38], ResNet [39],
VGG [40] or YOLOv3 [41] were taken after they had been pre-trained on popular and wide datasets
such as ImageNet [42], Places365 [43] or VOC [44] , and then fine-tuned on the dataset of this work.
Leveraging on pre-trained networks is a common practice in deep learning research: training a single
model from scratch requires prohibitive computational performances, nearly inaccessible to most
research centres or universities. Within the context of this paper, using CNNs that were pretrained on
datasets containing a variety of places, environments, and buildings, enables them to represent and
recognize objects and shapes in their internal layers. Fine-tuning such networks on a smaller dataset
for specific tasks, such as the ones used in this work, allows them to reuse the pre-trained knowledge to
achieve the goal more effectively. Most of the works proposed during the MediaEval competition used
the aforementioned CNNs to extract visual features from the last layers of the networks. Moreover,
besides extracting global features (pertinent to the whole image), Bischke et al. [45] and Zhao et al. [46]
also combined information related to single entities (i.e., cars, boats, persons), named local features.

Then, extracted features were used for classification in several manners. One option [20,22,47]
was to feed them as input for a neural network having few fully connected layers and using
softmax for classification. Other approaches used other state-of-the-art machine learning algorithms,
such as Support Vector Machine (SVM) [21,23,45,46,48], Multinomial Naive-Bayes, Random Forest
and SRKDA [21]. The approaches which performed best exploited ensemble models, where their
final output was determined by majority voting or averaging each model’s prediction. Ensemble
models were also used for feature extraction, combining features extracted from the same picture
by several CNNs [20]. Finally, two strategies were used to merge metadata and visual information:
early and late fusion. The early fusion combines the features before being computed by the classifier(s),
while late fusion averages the prediction of the approaches separately developed for the two domains.

In our work, we introduce a novel lightweight network architecture, able to achieve comparable
results of the winner-approach, namely an ensemble model of 45 CNNs per task. The proposed
approach leverages on a custom loss function, and accomplishes both the tasks at once, reducing the
number of needed parameters.

3. Dataset

The dataset used to train, validate and test the algorithms was distributed by MediaEval 2018
for the Multimedia Satellite Challenge [49,50]. It consists of 7387 tweet ids for the development set
and 3683 tweet ids for the test set. By the time the images were downloaded for this competition,
a significant number of tweets were no longer available, which resulted in a development set of
5818 tweets and a test set of 3017 tweets. However, since the work done in this paper corresponds
to an extension to the work done for the Multimedia Satellite Challenge and we do not have the
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ground truth for the test set data, we will divide the training set into training (4074 images), validation
(872 images) and test (872 images). The images for the test set will only be used to report the final
results to make the setup as close as the original challenge.

The tweets have been collected by retrieving all the tweets with images containing the tags flooding,
flood and floods during the hurricanes Harvey, Irma, and Maria. Since the image information is crucial to
this work and a lot of images were duplicate in the tweets, a process to remove duplicate images was
carried out by the dataset distributors. This process is described in detail in [49].

The provided ground truth for the tweets was manually generated through a crowdsourcing task
and consists of a binary class label for the evidence of road presence and only for those images classified
as containing a road, a second binary class label for the actual passability of the road. Positive road
passability is considered when the road is practicable by conventional means (no boats, off-the-road
vehicles, monster trucks, Hummer, Landrover, farm equipment) and it is, therefore, related to the
water level and the surrounding context.

The annotators made the decisions based only on the content of the analyzed images. The dataset
is significantly imbalanced towards the non-evidence of road, having only ∼36% of the tweet images
containing roads. In ∼45% of the tweets labeled as containing roads, there is evidence of positive road
passability. In Table 1, the absolute number of images pertaining to each class is displayed.

Table 1. Information about the number of images of each set and the number of images with evidence
of road and among those, the number of images with passable roads.

Dataset # Tot. Imgs
# Evid. of Roads # Passable Roads

YES NO YES NO

development set 5818 2130 3688 951 1179
test set 3017 - - - -

3.1. Metadata

Each tweet has a set of metadata associated with it, including the user who tweeted it and the text
shared by the user. In Table 2, we briefly describe the most relevant fields (metadata) contained in each
tweet. Since many of them are empty or semi-empty, we only report the fields (16 out of 29) without
missing values in the MediaEval 2018 tweets.

Table 2. Brief description of the metadata fields that have non-empty values in at least 90% of the
given tweets.

Field Description Type

Created at UTC time when this tweet was created object

Entities Dictionary of the entities which have been parsed out object
of the text, such as the hashtags

Extended entities Dictionary of entities extracted from the media, object
such as the image size

Favorite count Indicates how many times the tweet has been liked int64

Favorited Indicates whether the tweet has been liked bool

Id Unique identifier of the tweet int64

Id str String version of the unique identifier object

Is quote status Indicates whether this is a quoted tweet bool

Lang Indicates the language of the text (machine generated) object

Possibly sensitive When the tweet contains a link it indicates if the content of object
the URL is identified as containing sensitive content
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Table 2. Cont.

Field Description Type

Retweet count Indicates how many times has the tweet been retweeted int64

Retweeted Indicates whether the tweet has been retweeted bool

Source Utility used to post the tweet object

text Text written by the user object

Truncated Whether the value of the text parameter was truncated bool

User Dictionary of information about the user who posted the tweet object

3.2. Images

Since the tweets have been retrieved using flood-related tags, most of the images contained in the
dataset are actually related to floods. Among the images that have been classified as not containing
roads, some of them contain charts or weather maps, others contain information about floods which
is not related to roads, whereas some images contain no flood information. The images containing
evidence of passable roads, in many cases, show cars crossing the road or have enough surrounding
contextual information that allows it to be inferred that the water level is not very high, whereas the images
containing evidence of roads with negative passability contain cars stuck in roads and people crossing
the street with boats in many cases. Some examples of the images contained in the dataset are given in
Figure 2. Sometimes the differences between positive and negative road passability are very subtle and
subjective (e.g., see Figure 2i,j), while we believe others are wrongly classified (e.g., see Figure 2k,l).

(a) ER: no (b) ER: no (c) ER: no (d) ER: no

(e) ER: yes; EPR:
yes

(f) ER: yes; EPR:
yes

(g) ER: yes; EPR:
no

(h) ER: yes; EPR:
no

(i) ER: yes; EPR:
yes

(j) ER: yes; EPR:
no

(k) ER: no (l) ER: no

Figure 2. Examples of images from the dataset. The first row (a–d) contains images classified as not
containing Evidence of Roads (ER), while the second row (e–h) contains images classified as containing
evidence of roads and their corresponding Evidence of Road Passability (ERP). The third row (i–l)
corresponds images that were difficult to classify or wrongly classified ones.
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4. Proposed Solutions

In this section, we describe a solution using only metadata information, a solution using only the
tweeted image and a solution that combines both sources of information.

4.1. Algorithm Based on Metadata Only

As explained in Section 3, each tweet contains 29 different fields, but only 16 of them had
non-empty values in at least 90% of the tweets. Therefore, the other 13 features were discarded since
they do not contain enough information to give any statistical significant information. Moreover,
we discarded the following features: (i) “Created at”, which contained the date in which the tweet was
posted. Since the tweets were collected during specific hurricane events (namely, Harvey, Irma and
Maria), we considered this field to have a very limited time coverage with the risk of being biased
and, therefore, not useful. Specifically, the development set contains tweets from 38 different days.
(ii) ”Extended entities”, which contains structural information about the tweet, such as the icon and
image sizes, their urls and ids and, therefore, it does not provide any relevant information; (iii) “Id”
and “Id str” fields are automatically generated to guarantee uniqueness to the tweet thus, do not
contain any meaningful information; (iv) “Truncated” contains a constant value, which is equal for each
tweet in the development set; (v) “Source” and “User”: contained features pertinent to Twitter and the
user profile, such as “id”, “profile image url”, “friends count”, which is information not relevant to our
purposes. Additionally, we verified that the development set rarely contained multiple posts from the
same user: this lack of information prevented the extraction of data for determining a possible positive
(or negative) influence toward our goals.

As for the “Lang” feature, since most of the tweets were in English and all the other languages were
very minoritary, we transformed it into a binary value “originally_en” to state whether the language of the
tweet was English. To ensure that all features would contribute equally to the loss function used to train
our proposed approaches, we normalized the features “Favorite count” and “Retweet count” between 0 and
1, which we named “favorited_norm” and “retweeted_norm”, respectively. Finally, we also discarded the
features corresponding to “Favorited” and “Retweeted” since they are subsumed by the former ones.

To determine a correlation between the normalized fields: “favorited_norm”, “is_quote_status”,
“originally_en”, “possibly_sensitive” and “retweeted_norm” and the task at hand, we built a point-biserial
correlation matrix between each feature and the “ER” and “ERP” ground truth using the Pearson
correlation coefficient. As seen on the point-biserial correlation matrix from Figure 3, none of the
features have a very strong correlation with the ground truth; however, we decided to keep the fields
“favorited_norm”, “originally_en” and “retweeted_norm” since they are the highest correlated features.

We expected the text written by the user (“Text”) and the hashtags of the tweet (“Entities”) to be
the most informative features, which we concatenated, obtaining a single sentence. To help the training,
we translated all the texts into English, tokenized the words, filtered stopwords (i.e., emojis, urls, special
characters, articles, conjunctions) and lemmatized the sentence. Finally the sentences were transformed
into a matrix using a word embedding initialized with GloVe [26] weights, transforming each word
into a vector of 200 dimensions. To be processed by a neural network, the matrices generated from
Text and Entities have been standardized to have the same number of word vectors—sentences shorter
than 30 words (the maximum length of a processed sentence in the dataset) have been filled with zero
padding. As other state-of-the-art works [51], the 30× 200 matrices have been fed in a Bidirectional Long
Short-Term Memory (BiLSTM) network. Then, the output was concatenated with the extra fields and fed
into two parallel fully-connected (FC) layers with a softmax classifier, one per task. In each FC layer,
we used the cross entropy H(y, y) as loss function, where y is the class annotation and y is the model
prediction. Denoting by HER(y, y), the loss function for the ER task and HERP(y, y) the loss function for
the ERP task, the overall loss HTOT(y, y) is set to be the sum of the preceding two. Finally, the outputs
from the two FC networks have been thresholded (with the threshold set to 0.5, which is the typical
threshold taken in these contexts since the output ranges between 0 and 1). The first FC layer output is
the prediction for the ER task, while the second FC layer output, which represents the prediction for the
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ERP task, is combined with the first output through a logical AND operation. This operation avoids the
network to predict inconsistent situations, such as having Evidence of Roads Passability while there is
No Evidence of Roads. A representation of the architecture is shown in Figure 4.

Figure 3. Correlation matrix between the ground truth features, “ER” (Evidence of Roads) and “ERP”
(Evidence of Roads Passability) as two separate binary values, with the numerical features that were
not discarded.

Figure 4. Architecture of the neural network to process metadata. The input matrix, composed by
stacked word embeddings representing the tweeted text and hashtags is processed by a Bidirectional
Long Short-Term Memory network (BiLSTM). Its output is concatenated with other metadata
information representing whether: (i) the tweet has been favorited, (ii) the tweet was originally
written in English, (iii) it was retweeted. Then, two Fully Connected (FC) layers are dedicated to deal
with each task: the FC on the top will determine the Evidence of Roads (ER), while the other one will
determine the Evidence of Roads Passability (ERP). The classification is obtained by thresholding their
output. Finally, to guarantee consistent classifications, the output of the ERP classifier is combined with
the output of the ER classifier by a logical AND operation.

4.2. Algorithms Based on Image Only

In this subsection, we explain first the “ensemble image base architecture”, which is the solution
that we presented in the Flood classification challenge. Then, we present the new proposed architecture
which will be referred to as “double-ended network” and finally, we will introduce the extra loss that
we have applied to the learning process, which will be referred as “compactness loss”.

4.2.1. Ensemble Image Base Architecture

For this solution, we considered both tasks as two, separated, two-class classification
problems. Since performance is prioritized over computation and operational time, we created
an ensemble of networks, using 9 state-of-the-art networks: InceptionV3, Xception, VGG16, VGG19,
InceptionResNetV2, MobileNet, DenseNet121, DenseNet201, NaSNetLarge. Since the dataset was too
small to train the networks from scratch, we pre-trained all the networks on ImageNet [35], freezed
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the parameters from the first half of the network and fine-tuned the parameters from the second
half. All nine models were separately trained for both classification problems—one network for the
classification of road passability and one for the classification in positive or negative road passability.
The networks trained on the detection of positive or negative road passability were trained using only
the images with evidence of road passability according to the ground truth. Moreover, in order to
prevent overfitting, the dataset was randomly divided into training (75%) and validation (25%) sets.
The validation set was used to prevent the networks to overfit to the training set—after training the
networks in the training set, we stored the models that performed better in the validation set. Finally,
in order to prevent overfitting while exploiting the whole dataset, we performed cross-validation using
5 different train-validation folds. Each fold was generated using a random split of the development
set into 75% train and 25% validation, this means that there is some overlapping between splits.
Each network was trained in each fold and for each task separately, resulting in a total of 90 networks,
45 convolutional neural networks for each task (or 5 networks per network architecture and task).
The network architecture is shown in Figure 5a.

(a) (b)

Figure 5. (a) Schematic of the “ensemble base image architecture” which is composed by two
separate pre-trained networks in which their last layers were fine-tuned on their respective task.
(b) An equivalent architecture which shares the first layers and then diverges into two separate
branches for each task.

The output of each network is a number between 0 and 1 which represents the probability of
the picture containing evidence of road passability and whether the road has a positive or a negative
passability, respectively. In order to ensemble the results of all the networks, we decided to allocate the
same weight to each sub-model and we applied two different aggregation methods. On the one hand,
we applied a classical average aggregation prediction. On the other hand, we applied a combination
of an average aggregation with a majority voting aggregation. These two aggregation methods are
defined, respectively, by

pred1(p1, . . . , pn) = (p > 0.5),

and pred2(p1, . . . , pn) =
1 if

(
p > 0.45 and voting(p1, . . . , pn) ≥ n

2
)

or(
p > 0.5 and voting(p1, . . . , pn) >

n
2 − 2

)
,

0 otherwise,
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where n is the number of networks, pi is the probability given by the ith-network of the picture
belonging to Class 1, which corresponds to having positive Evidence of Road (ER) for the first task
and having positive Evidence of Passable Road (EPR) for the second task. p is the average of pi for
all 1 ≤ i ≤ n and voting is given by voting(p1, . . . , pn) = {i pi > 0.5, 1 ≤ i ≤ n}, where . is the
set cardinality.

Thresholding over the average of the predictions p or taking the majority vote are two largely
adopted approaches to deal with ensemble model predictions. However, their combination through a
logical “and” tends to benefit the prediction of negative outcomes (no ER, nor ERP) with the result of
lowering the number of matches with the ground truth. Therefore, we added two variables x and y to
weaken the constraints, defining the following function pred2(p1, . . . , pn, x, y) =

1 if
(

p > 0.5− x and voting(p1, . . . , pn) ≥ n
2
)

or(
p > 0.5 and voting(p1, . . . , pn) >

n
2 − y

)
,

0 otherwise.

To determine the best values for the two variables, we applied the aggregation methodology with
the grid search [52] approach in the validation set: the variable x was set to range from 0 to 0.5 with a
step of 0.05, while y was set to range from 0 to n

2 with a step of 1. As a result, the assignments that
maximized the number of matches between the model’s predictions and the dataset annotations were
x = 0.05 and y = 2.

Despite being a simple and effective model, in fact the winning solution of the challenge,
this solution requires a long training process as well as high computation cost and time during
testing. Moreover, the solution requires a lot of storage space, since parameters trained on 90 different
networks are saved.

4.2.2. Double-Ended Network

The ensemble base image architecture relies on two networks that were trained and tested
separately to solve each task individually. This architecture is represented in Figure 5a. However, since
we are using a pre-trained network and freezing half of the model, both tasks share the first parameters
of the model. Thus, we reorganized the solution as a single model where the first part of the model has
the shared parameters and then diverges into two branches, each one with the specific parameters
learned for each task, as represented in Figure 5b. This solution is equivalent to the two separate
networks in terms of performance but it is lighter, end-to-end and computationally less expensive since
we do not run the image through the same layers twice. Starting from this idea, and knowing that
in the literature it has been stated that networks trained to perform two related tasks simultaneously
can achieve better performance on both tasks than if they were trained separately [53], we decided to
propose the model represented in Figure 6. This architecture is similar to the one from Figure 5b but the
division of the two branches is at the end of the last convolutional layer. After the last convolutional
layer, the network is divided into two branches, one for each task with two consecutive fully connected
layers per task. In this case, the first half of the shared parameters are frozen during training while the
other half are fine-tuned jointly.

To validate that as hypothesized, both tasks are indeed related and what has been learned for one
task could benefit the other task, we decided to check the activation maps triggered by the networks
trained on both tasks separately. To do so, we used the gradient-weighted class activation mapping
(Grad-CAM). This is a technique proposed in [54] which highlights the regions which triggered the
Convolutional Neural Network (CNN) to make its classification by analyzing the activations of a
convolutional layer of the network. We extracted the heatmap of the gradient activations from the last
convolutional layer of the single network trained on both tasks separately. In Figure 7, we present
the corresponding activation heatmaps for four images from the validation set. As seen in Figure 7,
the activation scale ranges from blue to red in the images, where red corresponds to the greatest
activation (MAX) and blue to the minimum one (MIN). The upper row of images corresponds to the
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activations of the network trained on evidence of road classification, while the second row corresponds
to the activations of the same images on the network trained on road passability classification. As we
can observe in the figure, while the activations from both networks are different, the reddish area
is located in a different part of the image, because one focuses more on water in general and the
surroundings to determine if it corresponds to a road and the other tends to give more importance to
the objects in the water to determine if the road is passable or not and even though both networks were
trained separately, their activations are highly correlated, since both tasks are also highly correlated.
This supports our hypothesis that by training both tasks simultaneously and having both tasks share
more parameters, one task could benefit from what the other has learned.

Figure 6. Representation of the double-ended architecture.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Examples of images created with Grad-CAM. The first row (a–d) corresponds to the
activations triggered by the network trained on the evidence task (ER), while the second (e–h) has the
activations, for the same image, of the network trained on the passability task (ERP). At the bottom of
the figure, there is a scale that is used to highlight the activations of the model, where red represents a
higher activation and purple means minimal activation. As seen in the first row, the activations for the
evidence of the road task are maximal in the water regions. In the second row, which corresponds to
evidence of road passability, there is a greater activation for the elements located both in and outside
the flooded area. This is because it is necessary to rely on these elements to identify the height of
the water.
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4.2.3. Compactness Loss

As previously explained, the problem is divided into two tasks: (i) detecting if the image has
evidence of roads and (ii) if the image has been classified as containing a road, determining whether
the road is passable or not. The first task could be considered as a binary classifier (“evidence of road
passability” and “no evidence of road passability”), but the concept of “not having any evidence
of road passability” could also be subsumed by “anything which is not contained in the first class”.
Thus, the problem could also be considered as a one class classification or as an out of distribution
problem, where “evidence of road passability” would be the class to classify (or the in distribution
class). The advantage of considering the problem as a one-class classification problem rather than
a binary classification problem is that one-class classification algorithms take into account that the
out of distribution class is not only defined by the images used for the training, but that it could be
anything that has not previously been seen during the training phase. Similarly, the second task could
be considered as a binary classification problem (“passable” and “impassable” roads) or as a one class
classification problem “passable road”.

For this solution, we considered both tasks as a one-class classification problem. Taking inspiration
from [55], we wanted the features extracted from the first fully connected layer to be as descriptive
as possible for the class at hand, meaning that the feature representation of that class’ images will be
distinctive from the feature representation for images not belonging to the class and, at the same time,
we would like a low intra-class distance, meaning that features from the same class should be as close
as possible in the feature space. This optimization can be described as ĝ = maxgD(g(t)) + λC(g(t)),
where: g is the deep feature representation for the training data t, λ is a positive constant and D is the
Descriptive loss function (within this approach, we used the cross-entropy) and C is the compactness loss
function, which evaluates the batch inter-class deep feature distance to derive objects from the same
class. This compactness loss can be applied to either of the two previous models, the ensemble base
image architecture or the double-ended architecture. In the first case, we would add the compactness
loss to the first fully connected layer. For the double-ended architecture, we would replace the last fully
connected layer by a fully connected layer followed by two fully connected layers in parallel—one for
each task—and add a compactness loss for each task, as shown on Figure 8. The outputs of both final
fully connected layers are two real values in the range (0,1). They represent the percentage of which
the evidence is believed to be of roads and of passable roads, respectively. The two outputs are then
rounded according to a threshold of 0.5. Therefore, the first output is the classifier for the ER class.
On the other hand, to avoid inconsistent classifications (i.e., ER = false and ERP = true), the second
output is multiplied by the first one, determining the classifier for the ERP class. Note that the decision
of which fully connected layer accomplishes the ER and which the ERP tasks is taken during the
network training phase.

For the compactness loss, we implemented the same loss as the one proposed in [55], which is
given by

lc =
1

nk

n

∑
i=1

zi
Tzi (1)

where zi = xi −mi, being xi ∈ Rk the samples of the batch of size n for all 1 ≤ i ≤ n and mi =

1
n−1

n

∑
j=1
j 6=i

xj, the mean of the remaining samples. As it is proved in [55], this compactness loss is in fact a

scaled version of the sample variance given by

lC =
1

nk

n

∑
i=1

n2σ2
i

(n− 1)2 , (2)

where σ2
i is the sample variance for all 1 ≤ i ≤ n.
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Figure 8. Double-ended classifier with compactness loss. The model is based on the Inception V3
network, replacing the last fully connected layer by a 1024 fully connected layer which extracts the
image features and two parallel fully connected layers, one for each task. Two losses are trained
simultaneously, a compactness loss to ensure low-intra class feature distance and a descriptiveness
loss, to ensure a high-inter class feature distance.

In order to implement the backpropagation, we need to compute the gradient of lc with respect to
the input xij. In [55], the derivation of the backpropagation formula obtained from the gradient of lC
with respect to xij contains a mistake. Indeed, in Appendix A in [55], it is stated that the gradient is
given by the following equation

∂lC
∂xij

=
2

(n− 1)nk

[
n×

(
xij −mij

)
−

n

∑
l=1

(xil −mil)

]
. (3)

In Appendix A, we prove that the gradient is acutally given by the following equation:

∂lC
∂xij

=
2

(n− 1)nk

[
n ·
(
xij −mij

)
−

n

∑
l=1

(
xl j −ml j

)]
.

4.3. Algorithm Based on Metadata and Visual Information

To combine the information from the metadata and the images, any of the previously proposed
solutions for the image-only architecture can be combined with the metadata-only architecture by
concatenating the features extracted from the bi-directional LSTM with the features extracted by the
convolutional network, as seen in Figure 9.

Figure 9. Combination of the Double-ended classifier with compactness loss and the metadata system.
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5. Evaluation and Results

As we have already commented, part of this work has been carried out for a competition in the
MediaEval 2018 workshop, in which a total of nine teams participated. In this section, we will compare
not only the results of the different methods proposed in this paper but we will also compare them
with the results of all the other participants of the workshop. However, since this is an extension of the
work done for the competition and we do not have access to the ground truth of the test set, we had
to divide the training set into training and test sets, as explained in Section 3. Therefore, the results
given for our models will be tested on a different set as the ones for the competition. To make the
comparison as fair as possible, we created a validation set from our training set, to validate the models
and tune the hyperparameters. The test set was only used to provide the final results for the paper.

In addition, in order to have an understandable baseline to compare the results, we asked
four people to perform the task on a subset of 50 images. These persons were external to the project but
had knowledge about artificial intelligence and computer vision. They received a verbal explanation
of the task in the lines of the explanation given by the challenge organizers and they were not given
any examples before starting the annotation.

All the results provided in this section will be given in terms of F1-Score, the harmonic mean of
precision and recall. For the human annotators, we will give the results as the average of their F1-Score.
It is important to note that the second task, the classification between passable and not passable roads,
depends on the first task since if an image has been classified as not containing evidence of road
passability, it will not be considered for the second task. Therefore, a false negative detection in the
first task (an image wrongly classified as not containing evidence of road passability) will also count
as a false negative in the second task, regardless of its ground truth. At the same time, a false positive
in the first task (an image wrongly classified as containing evidence of road passability) will also count
as a false positive for the second task. Due to this error propagation, the performance of the second
task cannot be higher than the performance of the first task.

We will evaluate the results of the proposed models in this paper in the same order that we have
presented them in the previous section.

5.1. Results Using Metadata Only

In Table 3, the results of the model using metadata information only are provided. As it can be seen
from the table, the performance in general is quite low, even in the case of human annotators. We believe
that this is because a lot of the tweets have little information about the tasks in their metadata.

Table 3. F1-Scores on the challenge test set for both tasks using metadata information only. * Results
given on our own test set. ** Results on a subset of 50 images.

Approach\Data
Evidence of Road [%] Ev. of Road Passability [%]

Validation Set Test Set Validation Set Test Set

Human annotation 51.48 ** - 18.18 ** -
Metadata only 59.93 62.56 * 56.82 57.05 *

Y. Feng et al. [20] - - - 32.8
M. Hanif et al. [21] - 58.30 - 31.15
Z. Zhao et al. [46] - 32.60 - 12.86

A. Moumtzidou et al. [22] - - - 30.17
A. Kirchknopf et al. [23] - - - 20

5.2. Results Using Images Only

In the case of images where we have proposed several models, first we are going to comment and
compare the results of the different models that we proposed in this article and then compare them with
the algorithms proposed by the rest of the participants. Firstly, we have presented the “ensemble base
image architecture” which was the algorithm presented for the competition. This algorithm is mainly
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based on performing iterative cross-validation to train models and ensemble them, for which we
proposed a new ensembling technique. Since for this paper we have carried out a new training and test
split, to make the comparison as fair as possible, we have retrained this architecture on the new training
set and tested on the new test set. In Figures 10 and 11, we show how the F1-Score evolves for both
tasks as we ensemble more models and the difference between the different ensembling techniques.
As it can be seen from the curves, both tasks benefit from the ensembling, particularly for the first
networks, then the performance stabilizes. The evidence of road benefits more from this technique
than the passability of road task, and the curves for the passability task are less stable. We believe
that this is due to the difference in the difficulties of both tasks. As can be seen towards the end of the
graphs, the results of both tasks begin to slowly worsen. That is because (i) we are adding different
architectures and some of them yield better results on average than others; (ii) we have stacked the
networks in order of the architectures’ average performance and thus it gets a point in which adding
more architectures starts degrading the results. Given the information from both graphs, the ensemble
of more than 30 models (up to 90, in our test case) does not significantly improve the performance.
The ensemble of 90 networks (45 per task) was the winning architecture presented in the MediaEval
competition, and its performances are presented in Table 4. This is the only architecture for which
we have results on both the challenge and our own test sets. The results of the MediaEval test set are
very similar to the results obtained for our own test set, which indicates that the difficulty of both
sets is quite similar, allowing us to make a fair comparison with the results of the other participants.
Some differences might be due to the fact that we have had to retrain all the networks to fit them to the
new training, validation and test set. As for the ensembling technique, voting seems to have slightly
worsened the results in the evidence of road task while averaging led to worsening of the results in the
road passability task. For this reason, we decided to use the ensembling technique that we proposed in
this paper for the final results, since it is the technique that has the most stable results.

The use of the ensemble models makes sense for a competition; however, it might not be suitable
for a real life application, since it tends to be computationally expensive and time consuming. Therefore,
we focused our analysis to compare the best available model, obtained without taking into account
computational limitations, with a lightweight version, proposed in this work. We started using an
“ensemble of one-model per task”, that we named “single-network image base image architecture”,
and then we compared it with the “double ended architecture”, presented in the previous section.
To reduce the randomness associated with the training process, both architectures were initialized with
the same weights and used the same hyperparameters and stopping criterion. As it can be seen from
Table 4, the improvement is quite significant, particularly in the passability task. We believe that this is
because the passability task has significantly fewer images to train when trained separately so it is
more difficult for the model to generalize to new data and when trained together, the passability task
can benefit from what the evidence task has learned. On top of obtaining better results than the single
network base image architecture”, the “double ended architecture” has fewer parameters, making it
lighter and computationally less expensive, and it is an end-to-end architecture.

Then, we proposed to use the “compactness loss” to make the model more robust to unseen data.
We retrained the previous model with the compactness loss on each branch, as shown in Figure 8.
The results of both the validation and test set are in Table 4. Although we cannot extract direct evidence
from this table that the compact loss improves the results, it does seem to generalize better to the test
set since the results from validation to test are more similar than the ones without compactness loss.

Finally, by combining the improvements using the double-ended classifier and the compactness
loss, we are able to reach almost the same performance as we had obtained using the ensemble
of 30 models, meaning that we have a model that is almost 30 times lighter and faster with a
comparable performance.
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Table 4. F1-Scores on the challenge test set for both tasks using only the images from the tweets.
* Results on a subset of 50 images.

Approach\Data
Evidence of Road [%] Ev. of Road Passability [%]

Validation Set Test Set Test Set Validation Set Test Set Test Set
(MediaEval) (Own) (MediaEval) (Own)

Human annotation 87.32 * - - 47.71 * - -
Ensemble image base architecture (90) 90.14 87.79 90.17 64.33 68.38 65.91
Ensemble image base architecture (30) 88.91 - 89.45 70.18 - 65.28
Single network image base architecture 86.48 - 84.88 62.84 - 59.99

Double-ended architecture 88.73 - 85.00 67.51 - 67.91
Double-ended with compactness loss 87.78 - 86.42 67.49 - 68.53

Y. Feng et al. [20] - - - - 64.35 -
M. Hanif et al. [21] - 74.58 - - 45.04 -
Z. Zhao et al. [46] - 87.58 - - 63.13 -

A. Moumtzidou et al. [22] - - - - 66.65 -
A. Kirchknopf et al. [23] - - - - 24 -

N. Said et al. [48] - - - - 65.03 -
D. Dias [47] - - - - 64.81 -

B. Bischke [45] - 87.70 - - 66.48 -

Figure 10. Evolution of F1-Score on the road evidence task as we ensemble more networks and make a
comparison between the three different ensembling techniques.

Figure 11. Evolution of F1-Score on the road passability task as we ensemble more networks and make
a comparison between the three different ensembling techniques.

It is remarkable that the results using images are considerably better than the ones using metadata,
not only in our case but also for humans or other participants. That is because the dataset has been
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built and annotated using only the visual information, thus we know that the images should have
enough information to solve the problem, but the metadata does not necessarily always have this
distinctive information.

5.3. Results Using Images and Metadata

As a final step, we combined the previous best model with the metadata information. As it was
not clear from the previous results if the compactness loss provided a significant boost in performance,
we tried combining the metadata with the double-ended classifier with and without compactness loss.
The results are given in Table 5. In this case, we can notice a considerable improvement in the model
with compactness loss relative to the one without it. In fact, this model achieves only 3% below the
best score in the evidence of road task, while it obtains almost a 10% improvement in evidence of
road passability compared to the second best participant. Finally, it seems like adding the metadata
information improves the road passability task. To understand how the metadata information can help
to improve the results, in Figure 12, some tweet examples are given that were incorrectly classified
by the image only model but correctly classified by the model which combined visual and metadata
information. These tweets contain some very informative keywords, such as flooded street, stalled cars
and drive through.

Table 5. F1-Scores on the challenge test set for both tasks using the metadata and image information.
* Results given on our own test set.

Approach\Data
Evidence of Road [%] Ev. of Road Passability [%]

Validation Set Test Set Validation Set Test Set

Double-ended architecture 78.96 86.99 * 61.06 62.96 *
Double-ended with compactness loss 77.85 84.56 * 73.61 75.93 *

Y. Feng et al. [20] - - - 59.49
M. Hanif et al. [21] - 76.61 - 45.56
Z. Zhao et al. [46] - 87.58 - 63.88

A. Moumtzidou et al. [22] - - - 66.43
A. Kirchknopf et al. [23] - - - 35

(a) (b)

Figure 12. Cont.
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(c) (d)

(e)

Figure 12. Examples of tweets contained within the dataset that allowed to disambiguate the visual
content for a correct ERP prediction. In (a–e) the text of the tweets allowed to resolve ambiguous ERP
images thanks to keywords such as “flooded” in relation to roads and “drive through” in reference
to vehicles.

6. Conclusions

In this paper, we have extended the work conducted for the Flood classification challenge in
MediaEval 2018 in which we had presented a winning architecture based on a fine-tuning and
ensembling of 45 models for each task. In this paper, we evaluate the evolution of the performance of
the algorithm as we ensemble more models. It is determined that by ensembling models in order of
average performance, we can obtain some improvements in terms of F1-Score for both tasks. However,
as we ensemble networks, at some point, adding more networks to the ensemble starts worsening
the results. Thus, by reducing the number of ensembled models to 30, we can reduce the number
of ensembled networks, making the solution faster and lighter while improving the results. Then,
we proposed a double-ended architecture that trains both tasks simultaneously to further reduce
the number of parameters of the solution and to let the network share knowledge between tasks.
We also propose the usage of a compactness loss, a loss proposed to convert a binary classifier network
into a one-class classification network. In the original paper, the derivation of this loss contained
a mistake which is corrected in this paper. Through experiments, we conclude that, by combining
the double-ended architecture and the compactness loss, we are able to obtain a single network that
solves both problems, achieving comparable results for the evidence of road task and better results
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for the road passability estimation compared to the ensemble models. Since this solution does not
rely on ensemble networks, it is almost 90 times faster and also lighter than the originally proposed
architecture, making it a viable solution for a real-life application.
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Appendix A

In Appendix A from [55], it is stated that the gradient is given by the following equation

∂lC
∂xij

=
2

(n− 1)nk

[
n×

(
xij −mij

)
−

n

∑
l=1

(xil −mil)

]
. (A1)

However, there are some mistakes in that equation. The first mistake is within the summation
since the samples xi have k components, not n. However, as we will prove, this is not a unique mistake.

Let us compute the gradient of lC with respect to xij. Using the definition of the inner product,

we have that zi
Tzi =

k

∑
t=1

z2
it. Thus, lC can be written as

lC =
1

nk

n

∑
l=1

k

∑
t=1

(xlt −mlt)
2.

Now, taking partial derivatives of lC with respect to xij for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, we obtain

∂lC
∂xij

=
2

nk

n

∑
l=1

(xl j −ml j) ·
(

∂(xl j −ml j)

∂xij

)
.

This first step is already incorrect in [55]. The rest of the proof follows similarly. Let us check it.
Note that

∂(xl j −ml j)

∂xij
=

 1 if l = i,

− 1
n− 1

otherwise.

Thus, we obtain that

∂lC
∂xij

=
2
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1

n− 1
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∑
l=1
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retrieving finally

∂lC
∂xij

=
2

(n− 1)nk

[
n ·
(
xij −mij

)
−

n

∑
l=1

(
xl j −ml j

)]
.

References

1. EM-DAT. The International Disaster Database; Centre of Research on the Epidemiology of Disasters—CRED:
Brussels, Belgium, 2019.

2. EM-DAT. The International Disaster Database—Data Access; Centre of Research on the Epidemiology of
Disasters—CRED: Brussels, Belgium, 2019.

3. EU-Commission. Funding Opportunities to Support Disaster Risk Prevention in the Cohesion Policy 2014–2020
Period; European Commission: Brussels, Belgium, 2014.

4. AnsuR Technologies AS. UN-ASIGN. 2019. App. Available online: https://play.google.com/store/apps/
details?id=ansur.asign.un&hl=en_US (accessed on 4 November 2020).

5. AnsuR Technologies AS. UN-ASIGN. 2019. FP7 Project. Available online: https://cordis.europa.eu/project/
rcn/94375/factsheet/en (accessed on 4 November 2020).

6. Istituto Superiore Mario Boella (ISMB). I-REACT. 2019. App. Available online: https://play.google.com/
store/apps/details?id=it.ismb.iReact&hl=en_US (accessed on 4 November 2020).

7. Istituto Superiore Mario Boella (ISMB). I-REACT. 2019. H2020 Project. Available online: https://cordis.
europa.eu/project/rcn/203294/factsheet/en (accessed on 4 November 2020).

8. Wukich, C. Social media use in emergency management. J. Emerg. Manag. 2015, 13, 281–294. [CrossRef]
[PubMed]

9. Lopez-Fuentes, L.; Farasin, A.; Skinnemoen, H.; Garza, P. Deep Learning Models for Passability Detection of
Flooded Roads; CEUR-WS: Aachen, Germany, 2018; p. 2283.

10. Saroj, A.; Pal, S. Use of social media in crisis management: A survey. Int. J. Disaster Risk Reduct. 2020,
48, 101584. [CrossRef]

11. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Determining disaster severity through
social media analysis: Testing the methodology with South East Queensland Flood tweets. Int. J. Disaster
Risk Reduct. 2020, 42, 101360. [CrossRef]

12. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. How engaging are disaster management related social
media channels? The case of Australian state emergency organisations. Int. J. Disaster Risk Reduct. 2020,
48, 101571. [CrossRef]

13. Ferner, C.; Havas, C.; Birnbacher, E.; Wegenkittl, S.; Resch, B. Automated Seeded Latent Dirichlet Allocation
for Social Media Based Event Detection and Mapping. Information 2020, 11, 376. [CrossRef]

14. Kruspe, A.; Kersten, J.; Klan, F. Detection of informative tweets in crisis events. Nat. Hazards Earth Syst.
Sci. Discuss. 2020, 1–18. [CrossRef]

15. Lopez-Fuentes, L.; van de Weijer, J.; Bolanos, M.; Skinnemoen, H. Multi-modal Deep Learning Approach for
Flood Detection. MediaEval 2017, 17, 13–15.

16. Zaffaroni, M.; Rossi, C. Water Segmentation with Deep Learning Models for Flood Detection and Monitoring.
In Proceedings of the 17th ISCRAM Conference, Blacksburg, VA, USA, 24–27 May 2020; pp. 66–74.

17. Lopez-Fuentes, L.; Rossi, C.; Skinnemoen, H. River segmentation for flood monitoring. In Proceedings of
the 2017 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 6–10 November 2017;
pp. 3746–3749.
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